Ceftolozane/Tazobactam and Ceftazidime/Avibactam for Multidrug-Resistant Gram-Negative Infections in Immunocompetent Patients: A Single-Center Retrospective Study
Abstract
:1. Introduction
2. Results
2.1. Group Treated by Ceftolozane/Tazobactam
2.2. Group Treated by Ceftazidime/Avibactam
3. Discussion
4. Materials and Methods
Statistical Analysis
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Group Treated with Ceftolozane/Tazobactam (Total Patients N = 122) | Group Treated with Ceftazidime/Avibactam (Total Patients N = 47) | |||
---|---|---|---|---|
Sex | N | % | N | % |
M | 72 | 59.00 | 35 | 73.80 |
F | 50 | 41.00 | 12 | 26.20 |
Median age (years) | 64 y | 62.2 y | ||
Diagnosis | Group Treated with Ceftolozane/Tazobactam (Total Microbiological Samples N = 241) | Group Treated with Ceftazidime/Avibactam (Total Microbiological Samples N = 125) | ||
N | % | N | % | |
cIAIs | 109 | 45.20 | 12 | 9.60 |
cUTIs | 58 | 24.10 | 40 | 32.00 |
Sepsis | 48 | 19.90 | 70 | 56.00 |
Others | 26 | 10.80 | 3 | 2.40 |
TZP | Resistance | Sensitivity | N. of Isolated Microorganisms | % Sensitivity |
---|---|---|---|---|
Escherichia coli | 3 | 23 | 26 | 88.50 |
Klebsiella pneumoniae | 10 | 10 | 20 | 50.00 |
Pseudomonas aeruginosa | 3 | 28 | 31 | 90.30 |
χ2: p < 0.001 | ||||
MEM | Resistance | Sensitivity | N. of Isolated Microorganisms | % Sensitivity |
Escherichia coli | 1 | 34 | 35 | 97.10 |
Klebsiella pneumoniae | 5 | 31 | 36 | 86.10 |
Pseudomonas aeruginosa | 29 | 40 | 69 | 58.00 |
χ2: p < 0.001 | ||||
TAZ | Resistance | Sensitivity | N. of Isolated Microorganisms | % Sensitivity |
Escherichia coli | 15 | 11 | 26 | 42.30 |
Klebsiella pneumoniae | 11 | 10 | 21 | 47.60 |
Pseudomonas aeruginosa | 14 | 33 | 47 | 70.20 |
χ2: p < 0.05 | ||||
Antibiotic | Resistance | Sensitivity | N. of Isolated Microorganisms | % Sensitivity |
TZP | 37 | 81 | 118 | 68.60 |
MEM | 39 | 149 | 188 | 79.30 |
ETP | 36 | 84 | 120 | 70.00 |
TAZ | 69 | 69 | 138 | 50.00 |
CS | 9 | 28 | 37 | 75.70 |
CIP | 66 | 71 | 137 | 51.80 |
χ2: p < 0.001 |
TZP | Resistance | Sensitivity | N. of Isolated Microorganisms | % Sensitivity |
---|---|---|---|---|
Escherichia coli | 7 | 8 | 15 | 53.30 |
Klebsiella pneumoniae | 42 | 9 | 51 | 17.60 |
Pseudomonas aeruginosa | 8 | 6 | 14 | 42.90 |
χ2: p < 0.05 | ||||
MEM | Resistance | Sensitivity | N. of Isolated Microorganisms | % Sensitivity |
Escherichia coli | 1 | 11 | 12 | 91.70 |
Klebsiella pneumoniae | 20 | 22 | 42 | 52.40 |
Pseudomonas aeruginosa | 6 | 7 | 13 | 53.80 |
χ2: p < 0.05 | ||||
ETP | Resistance | Sensitivity | N. of Isolated Microorganisms | % Sensitivity |
Escherichia coli | 0 | 9 | 9 | 100.00 |
Klebsiella pneumoniae | 19 | 16 | 35 | 45.70 |
Pseudomonas aeruginosa | 2 | 0 | 2 | 0.00 |
Fisher’s test p < 0.01 | ||||
TAZ | Resistance | Sensitivity | N. of Isolated Microorganisms | % Sensitivity |
Escherichia coli | 8 | 1 | 9 | 11.10 |
Klebsiella pneumoniae | 33 | 2 | 35 | 5.70 |
Pseudomonas aeruginosa | 2 | 7 | 9 | 77.80 |
Fisher’s test p < 0.001 | ||||
Antibiotic | Resistance | Sensitivity | N. of Isolated Microorganisms | % Sensitivity |
TZP | 68 | 57 | 125 | 45.60 |
MEM | 31 | 71 | 102 | 69.60 |
ETP | 21 | 45 | 66 | 68.20 |
TAZ | 50 | 23 | 73 | 31.50 |
χ2: p < 0.001 |
References
- Rac, H.; Gould, A.P.; Bookstaver, P.B.; Justo, J.A.; Kohn, J.; Al-Hasan, M.N. Evaluation of early clinical failure criteria for gram-negative bloodstream infections. Clin. Microbiol. Infect. 2020, 26, 73–77. [Google Scholar] [CrossRef] [Green Version]
- Cerceo, E.; Deitelzweig, S.B.; Sherman, B.M.; Amin, A.N. Multidrug-resistant Gram-negative bacterial infections in the hospital setting: Overview, implications for clinical practice, and emerging reatment options. Microb. Drug Resist. 2016, 22, 412–431. [Google Scholar] [CrossRef] [PubMed]
- Brink, A.J. Epidemiology of carbapenem-resistant Gram-negative infections globally. Curr. Opin. Infect. Dis. 2019, 32, 609–616. [Google Scholar] [PubMed]
- Chia, P.Y.; Sengupta, S.; Kukreja, A.; Ponnampalavanar, S.; Ng, O.T.; Marimuthu, K. The role of hospital environment in transmissions of multidrug-resistant gram-negative organisms. Antimicrob. Resist. Infect. Control 2020, 9, 29. [Google Scholar] [PubMed] [Green Version]
- Martin, A.; Fahrbach, K.; Zhao, Q.; Lodise, T. Association between carbapenem resistance and mortality among adult, hospitalized patients with serious infections due to enterobacteriaceae: Results of a systematic literature review and meta-analysis. Open Forum Infect. Dis. 2018, 5. [Google Scholar] [CrossRef]
- Granata, G.; Petrosillo, N. Resistance to colistin in Klebsiella pneumoniae: A 4.0 strain? Infect. Dis. Rep. 2017, 9, 69–72. [Google Scholar]
- World Health Organization. Guidelines for the Prevention and Control of Carbapenem-Resistant Enterobacteriaceae, Acinetobacter Baumannii and Pseudomonas Aeruginosa in Health Care Facilities; World Health Organization: Geneva, Switzerland, 2017; ISBN 964-7445-88-1. [Google Scholar]
- Baditoiu, L.; Axente, C.; Lungeanu, D.; Muntean, D.; Horhat, F.; Moldovan, R.; Hogea, E.; Bedreag, O.; Sandesc, D.; Licker, M. Intensive care antibiotic consumption and resistance patterns: A cross-correlation analysis. Ann. Clin. Microbiol. Antimicrob. 2017, 16. [Google Scholar] [CrossRef] [Green Version]
- Van Loon, K.; Voor In’T Holt, A.F.; Vos, M.C. A systematic review and meta-analyses of the clinical epidemiology of carbapenem-resistant enterobacteriaceae. Antimicrob. Agents Chemother. 2018, 62. [Google Scholar] [CrossRef] [Green Version]
- Van Duin, D.; Bonomo, R.A. Ceftazidime/avibactam and ceftolozane/tazobactam: Second-generation β-lactam/β-lactamase inhibitor combinations. Clin. Infect. Dis. 2016, 63, 234–241. [Google Scholar] [CrossRef] [Green Version]
- De Jonge, B.L.M.; Karlowsky, J.A.; Kazmierczak, K.M.; Biedenbach, D.J.; Sahm, D.F.; Nichols, W.W. In vitro susceptibility to ceftazidime-avibactam of carbapenem-nonsusceptible Enterobacteriaceae isolates collected during the INFORM global surveillance study (2012 to 2014). Antimicrob. Agents Chemother. 2016, 60, 3163–3169. [Google Scholar] [CrossRef] [Green Version]
- Syue, L.S.; Chen, Y.H.; Ko, W.C.; Hsueh, P.R. New drugs for the treatment of complicated intra-abdominal infections in the era of increasing antimicrobial resistance. Int. J. Antimicrob. Agents 2016, 47, 250–258. [Google Scholar] [CrossRef] [PubMed]
- Wong, D.; van Duin, D. Novel beta-lactamase inhibitors: Unlocking their potential in therapy. Drugs 2017, 77, 615–628. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sucher, A.J.; Chahine, E.B.; Cogan, P.; Fete, M. Ceftolozane/tazobactam: A new cephalosporin and β-lactamase inhibitor combination. Ann. Pharmacother. 2015, 49, 1046–1056. [Google Scholar] [CrossRef]
- Livermore, D.M.; Mushtaq, S.; Ge, Y.; Warner, M. Activity of cephalosporin CXA-101 (FR264205) against Pseudomonas aeruginosa and Burkholderia cepacia group strains and isolates. Int. J. Antimicrob. Agents 2009, 34, 402–406. [Google Scholar] [CrossRef] [Green Version]
- Kadri, S.S.; Adjemian, J.; Lai, Y.L.; Spaulding, A.B.; Ricotta, E.; Rebecca Prevots, D.; Palmore, T.N.; Rhee, C.; Klompas, M.; Dekker, J.P.; et al. Difficult-to-treat resistance in Gram-negative bacteremia at 173 US Hospitals: Retrospective cohort analysis of prevalence, predictors, and outcome of resistance to all first-line agents. Clin. Infect. Dis. 2018, 67, 1803–1814. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kadri, S.S.; Lai, Y.L.E.; Ricotta, E.E.; Strich, J.R.; Babiker, A.; Rhee, C.; Klompas, M.; Dekker, J.P.; Powers, J.H.; Danner, R.L.; et al. External validation of difficult-to-treat resistance prevalence and mortality risk in Gram-negative bloodstream infection using electronic health record data from 140 US hospitals. Open Forum Infect. Dis. 2019, 6. [Google Scholar] [CrossRef] [PubMed]
- Bassetti, M.; Vena, A.; Giacobbe, D.R.; Falcone, M.; Tiseo, G.; Giannella, M.; Pascale, R.; Meschiari, M.; Digaetano, M.; Oliva, A.; et al. Ceftolozane/tazobactam for treatment of severe ESBL-producing Enterobacterales infections: A multicenter nationwide clinical experience (CEFTABUSE II Study). Open Forum Infect. Dis. 2020, 7. [Google Scholar] [CrossRef]
- Li, Y.Y.; Wang, J.; Wang, R.; Cai, Y. Double-carbapenem therapy in the treatment of multidrug resistant Gram-negative bacterial infections: A systematic review and meta-analysis. BMC Infect. Dis. 2020, 20. [Google Scholar] [CrossRef]
- Cancelli, F.; Oliva, A.; De Angelis, M.; Mascellino, M.T.; Mastroianni, C.M.; Vullo, V. Role of double-carbapenem regimen in the treatment of infections due to carbapenemase producing carbapenem-resistant Enterobacteriaceae: A single-center, observational study. Biomed. Res. Int. 2018, 2018. [Google Scholar] [CrossRef] [Green Version]
- Giannella, M.; Trecarichi, E.M.; Giacobbe, D.R.; De Rosa, F.G.; Bassetti, M.; Bartoloni, A.; Bartoletti, M.; Losito, A.R.; del Bono, V.; Corcione, S.; et al. Effect of combination therapy containing a high-dose carbapenem on mortality in patients with carbapenem-resistant Klebsiella pneumoniae bloodstream infection. Int. J. Antimicrob. Agents 2018, 51, 244–248. [Google Scholar] [CrossRef]
- Mashni, O.; Nazer, L.; Le, J. Critical review of double-carbapenem therapy for the treatment of carbapenemase-producing Klebsiella pneumoniae. Ann. Pharmacother. 2019, 53, 70–81. [Google Scholar] [CrossRef]
- Bryson, A.L.; Hill, E.M.; Doern, C.D. Matrix-assisted laser desorption/ionization time-of-flight. Clin. Lab. Med. 2019, 39, 391–404. [Google Scholar] [CrossRef] [PubMed]
- Hou, T.Y.; Chiang-Ni, C.; Teng, S.H. Current status of MALDI-TOF mass spectrometry in clinical microbiology. J. Food Drug Anal. 2019, 27, 404–414. [Google Scholar] [CrossRef] [PubMed]
- Vrioni, G.; Tsiamis, C.; Oikonomidis, G.; Theodoridou, K.; Kapsimali, V.; Tsakris, A. MALDI-TOF mass spectrometry technology for detecting biomarkers of antimicrobial resistance: Current achievements and future perspectives. Ann. Transl. Med. 2018, 6, 240. [Google Scholar] [CrossRef] [PubMed]
- Croxatto, A.; Prod’hom, G.; Greub, G. Applications of MALDI-TOF mass spectrometry in clinical diagnostic microbiology. FEMS Microbiol. Rev. 2012, 36, 380–407. [Google Scholar] [CrossRef] [PubMed]
- Singer, M.; Deutschman, C.S.; Seymour, C.; Shankar-Hari, M.; Annane, D.; Bauer, M.; Bellomo, R.; Bernard, G.R.; Chiche, J.D.; Coopersmith, C.M.; et al. The third international consensus definitions for sepsis and septic shock (sepsis-3). JAMA J. Am. Med. Assoc. 2016, 315, 801–810. [Google Scholar] [CrossRef]
- Tumbarello, M.; Trecarichi, E.M.; Corona, A.; De Rosa, F.G.; Bassetti, M.; Mussini, C.; Menichetti, F.; Viscoli, C.; Campoli, C.; Venditti, M.; et al. Efficacy of ceftazidime-avibactam salvage therapy in patients with infections caused by Klebsiella pneumoniae carbapenemase-producing K. pneumoniae. Clin. Infect. Dis. 2019, 68, 355–364. [Google Scholar] [CrossRef] [Green Version]
- Sader, H.S.; Flamm, R.K.; Carvalhaes, C.G.; Castanheira, M. Comparison of ceftazidime-avibactam and ceftolozane-tazobactam in vitro activities when tested against gram-negative bacteria isolated from patients hospitalized with pneumonia in United States medical centers (2017–2018). Diagn. Microbiol. Infect. Dis. 2020, 96. [Google Scholar] [CrossRef]
- Bassetti, M.; Peghin, M.; Vena, A.; Giacobbe, D.R. Treatment of infections due to MDR Gram-negative bacteria. Front. Med. 2019, 6, 74. [Google Scholar] [CrossRef]
- Sader, H.S.; Carvalhaes, C.G.; Duncan, L.R.; Flamm, R.K.; Shortridge, D. Susceptibility trends of ceftolozane/tazobactam and comparators when tested against European Gram-negative bacterial surveillance isolates collected during 2012-18. J. Antimicrob. Chemother. 2020. [Google Scholar] [CrossRef]
- Lee, Y.R.; Yeo, S. Cefiderocol, a new siderophore cephalosporin for the treatment of complicated urinary tract infections caused by multidrug-resistant pathogens: Preclinical and clinical pharmacokinetics, pharmacodynamics, efficacy and safety. Clin. Drug Investig. 2020. [Google Scholar] [CrossRef]
- Wu, J.Y.; Srinivas, P.; Pogue, J.M. Cefiderocol: A novel agent for the management of multidrug-resistant Gram-negative organisms. Infect. Dis. Ther. 2020, 9, 17–40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saisho, Y.; Katsube, T.; White, S.; Fukase, H.; Shimada, J. Pharmacokinetics, safety, and tolerability of cefiderocol, a novel siderophore cephalosporin for gram-negative bacteria, in healthy subjects. Antimicrob. Agents Chemother. 2018, 62. [Google Scholar] [CrossRef] [Green Version]
- Hackel, M.A.; Tsuji, M.; Yamano, Y.; Echols, R.; Karlowsky, J.A.; Sahm, D.F. In vitro activity of the siderophore cephalosporin, cefiderocol, against carbapenem-nonsusceptible and multidrug-resistant isolates of Gram-negative bacilli collected worldwide in 2014 to 2016. Antimicrob. Agents Chemother. 2018, 62. [Google Scholar] [CrossRef] [Green Version]
- Walkty, A.; Adam, H.; Baxter, M.; Denisuik, A.; Lagacé-Wiens, P.; Karlowsky, J.A.; Hoban, D.J.; Zhanel, G.G. In vitro activity of plazomicin against 5,015 Gram-negative and Gram-positive clinical isolates obtained from patients in canadian hospitals as part of the CANWARD study, 2011-2012. Antimicrob. Agents Chemother. 2014, 58, 2554–2563. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karaiskos, I.; Souli, M.; Giamarellou, H. Plazomicin: An investigational therapy for the treatment of urinary tract infections. Expert Opin. Investig. Drugs 2015, 24, 1501–1511. [Google Scholar] [CrossRef]
- Solomkin, J.; Evans, D.; Slepavicius, A.; Lee, P.; Marsh, A.; Tsai, L.; Sutcliffe, J.A.; Horn, P. Assessing the efficacy and safety of eravacycline vs. ertapenem in complicated intra-abdominal infections in the Investigating Gram-negative infections treated with eravacycline (IGNITE 1) trial a randomized clinical trial. JAMA Surg. 2017, 152, 224–232. [Google Scholar] [CrossRef] [PubMed]
- Johnston, B.D.; Thuras, P.; Porter, S.B.; Anacker, M.; VonBank, B.; Snippes Vagnone, P.; Witwer, M.; Castanheira, M.; Johnson, J.R. Activity of cefiderocol, ceftazidime-avibactam, and eravacycline against carbapenem-resistant Escherichia coli isolates from the United States and international sites in relation to clonal background, resistance genes, co-resistance, and region. Antimicrob. Agents Chemother. 2020. [Google Scholar] [CrossRef]
- Livermore, D.M.; Mushtaq, B.S.; Warner, A.M.; Woodforda, A.N. In vitro activity of eravacycline against carbapenem-resistant Enterobacteriaceae and Acinetobacter baumannii. Antimicrob. Agents Chemother. 2016, 60, 3840–3844. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Lin, X.; Bush, K. In vitro susceptibility of β-lactamase-producing carbapenem-resistant Enterobacteriaceae (CRE) to eravacycline. J. Antibiot. 2016, 69, 600–604. [Google Scholar] [CrossRef]
- Zhanel, G.G.; Cheung, D.; Adam, H.; Zelenitsky, S.; Golden, A.; Schweizer, F.; Gorityala, B.; Lagacé-Wiens, P.R.S.; Walkty, A.; Gin, A.S.; et al. Review of eravacycline, a novel fluorocycline antibacterial agent. Drugs 2016, 76, 567–588. [Google Scholar] [CrossRef] [PubMed]
- Sheu, C.C.; Chang, Y.T.; Lin, S.Y.; Chen, Y.H.; Hsueh, P.R. Infections caused by carbapenem-resistant Enterobacteriaceae: An update on therapeutic options. Front. Microbiol. 2019, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cultrera, R.; Libanore, M.; Barozzi, A.; d’Anchera, E.; Romanini, L.; Fabbian, F.; De Motoli, F.; Quarta, B.; Stefanati, A.; Bolognesi, N.; et al. Ceftolozane/Tazobactam and Ceftazidime/Avibactam for Multidrug-Resistant Gram-Negative Infections in Immunocompetent Patients: A Single-Center Retrospective Study. Antibiotics 2020, 9, 640. https://doi.org/10.3390/antibiotics9100640
Cultrera R, Libanore M, Barozzi A, d’Anchera E, Romanini L, Fabbian F, De Motoli F, Quarta B, Stefanati A, Bolognesi N, et al. Ceftolozane/Tazobactam and Ceftazidime/Avibactam for Multidrug-Resistant Gram-Negative Infections in Immunocompetent Patients: A Single-Center Retrospective Study. Antibiotics. 2020; 9(10):640. https://doi.org/10.3390/antibiotics9100640
Chicago/Turabian StyleCultrera, Rosario, Marco Libanore, Agostino Barozzi, Erica d’Anchera, Letizia Romanini, Fabio Fabbian, Francesco De Motoli, Brunella Quarta, Armando Stefanati, Niccolò Bolognesi, and et al. 2020. "Ceftolozane/Tazobactam and Ceftazidime/Avibactam for Multidrug-Resistant Gram-Negative Infections in Immunocompetent Patients: A Single-Center Retrospective Study" Antibiotics 9, no. 10: 640. https://doi.org/10.3390/antibiotics9100640
APA StyleCultrera, R., Libanore, M., Barozzi, A., d’Anchera, E., Romanini, L., Fabbian, F., De Motoli, F., Quarta, B., Stefanati, A., Bolognesi, N., & Gabutti, G. (2020). Ceftolozane/Tazobactam and Ceftazidime/Avibactam for Multidrug-Resistant Gram-Negative Infections in Immunocompetent Patients: A Single-Center Retrospective Study. Antibiotics, 9(10), 640. https://doi.org/10.3390/antibiotics9100640