Is Antimicrobial Dosing Adjustment Associated with Better Outcomes in Patients with Severe Obesity and Bloodstream Infections? An Exploratory Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Population and Study Design
2.2. Data Collection
2.3. Outcomes
2.4. Statistical Analysis
3. Results
3.1. Outcomes
3.2. Factors Associated with Adjusted Antimicrobial Therapy
3.3. Factors Associated with Unfavourable Outcomes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- The GBD 2015 Obesity Collaborators; Afshin, A.; Forouzanfar, M.H.; Reitsma, M.B.; Sur, P.; Estep, K.; Lee, A.; Marczak, L.; Mokdad, A.H.; Moradi-Lakeh, M.; et al. Health effects of overweight and obesity in 195 countries over 25 years. N. Engl. J. Med. 2017, 377, 13–27. [Google Scholar] [CrossRef] [PubMed]
- Falagas, M.E.; Kompoti, M. Obesity and infection. Lancet Infect. Dis. 2006, 6, 438–446. [Google Scholar] [CrossRef]
- Huttunen, R.; Syrjänen, J. Obesity and the risk and outcome of infection. Int. J. Obes. (Lond.) 2013, 37, 333–340. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hanley, M.; Abernethy, D.R.; Greenblatt, D.J. Effect of obesity on the pharmacokinetics of drugs in humans. Clin. Pharmacokinet. 2010, 49, 71–87. [Google Scholar] [CrossRef] [PubMed]
- Alobaid, A.S.; Hites, M.; Lipman, J.; Taccone, F.S.; Roberts, J.A. Effect of obesity on the pharmacokinetics of antimicrobials in critically ill patients: A structured review. Int. J. Antimicrob. Agents 2016, 47, 259–268. [Google Scholar] [CrossRef] [PubMed]
- Abdullahi, M.; Annibale, B.; Capoccia, D.; Tari, R.; Lahner, E.; Osborn, J.; Leonetti, F.; Severi, C. The eradication of Helicobacter pylori is affected by body mass index (BMI). Obes. Surg. 2008, 18, 1450–1454. [Google Scholar] [CrossRef]
- Halilovic, J.; Heintz, B.H.; Brown, J. Risk factors for clinical failure in patients hospitalized with cellulitis and cutaneous abscess. J. Infect. 2012, 65, 128–134. [Google Scholar] [CrossRef]
- Longo, C.; Bartlett, G.; Macgibbon, B.; Mayo, N.; Rosenberg, E.; Nadeau, L.; Daskalopoulou, S.S. The effect of obesity on antibiotic treatment failure: A historical cohort study. Pharmacoepidemiol. Drug Saf. 2013, 22, 970–976. [Google Scholar] [CrossRef]
- Theofiles, M.; Maxson, J.; Herges, L.; Marcelin, A.; Angstman, K.B. Cellulitis in obesity: Adverse outcomes affected by increases in body mass index. J. Prim. Care Community Health 2015, 6, 233–238. [Google Scholar] [CrossRef]
- Ibrahim, M.M.; Abuelmatty, A.M.; Mohamed, G.H.; Nasr, M.A.; Hussein, A.K.; El Deen Ebaed, M.; Sarhan, H.A. Best tigecycline dosing for treatment of infections caused by multidrug-resistant pathogens in critically ill patients with different body weights. Drug Des. Dev. Ther. 2018, 12, 4171–4179. [Google Scholar] [CrossRef] [Green Version]
- Goto, M.; Al-Hasan, M.N. Overall burden of bloodstream infection and nosocomial bloodstream infection in North America and Europe. Clin. Microbiol. Infect. 2013, 19, 501–509. [Google Scholar] [CrossRef] [Green Version]
- Paulsen, J.; Askim, Å.; Mohus, R.M.; Mehl, A.; Dewan, A.; Solligård, E.; Damås, J.K.; Åsvold, B.O. Associations of obesity and lifestyle with the risk and mortality of bloodstream infection in a general population: A 15-year follow-up of 64 027 individuals in the HUNT Study. Int. J. Epidemiol. 2017, 46, 1573–1581. [Google Scholar] [CrossRef] [Green Version]
- Atamna, A.; Elis, A.; Gilady, E.; Gitter-Azulay, L.; Bishara, J. How obesity impacts outcomes of infectious diseases. Eur. J. Clin. Microbiol. Infect. Dis. 2017, 36, 585–591. [Google Scholar] [CrossRef]
- Lizza, B.D.; Rhodes, N.J.; Esterly, J.S.; Toy, C.; Lopez, J.; Scheetz, M.H. Impact of body mass index on clinical outcomes in patients with gram-negative bacteria bloodstream infections. J. Infect. Chemother. 2016, 22, 671–676. [Google Scholar] [CrossRef] [PubMed]
- Lam, S.W.; Athans, V. Clinical and microbiological outcomes in obese patients receiving colistin for carbapenem-resistant gram-negative bloodstream infection. Antimicrob. Agents Chemother. 2019, 63, e00531-19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lines, J.; Yang, Z.; Bookstaver, P.B.; Catchings, E.; Justo, J.A.; Kohn, J.; Albrecht, H.; Al-Hasan, M.N.; Palmetto Health Antimicrobial Stewardship and Support Team. Association between body mass index and mortality in patients with gram-negative bloodstream infections. Infect. Dis. Clin. Pract. 2019, 27, 90–95. [Google Scholar] [CrossRef]
- Rhee, J.Y.; Kwon, K.T.; Ki, H.K.; Shin, S.Y.; Jung, D.S.; Chung, D.R.; Ha, B.C.; Peck, K.R.; Song, J.H. Scoring systems for prediction of mortality in patients with intensive care unit-acquired sepsis: A comparison of the Pitt bacteremia score and the Acute Physiology and Chronic Health Evaluation II scoring systems. Shock 2009, 31, 146–150. [Google Scholar] [CrossRef]
- Paterson, D.L.; Ko, W.C.; Von Gottberg, A.; Mohapatra, S.; Casellas, J.M.; Goossens, H.; Mulazimoglu, L.; Trenholme, G.; Klugman, K.P.; Bonomo, R.A.; et al. International prospective study of Klebsiella pneumoniae bacteremia: Implications of extended-spectrum beta-lactamase production in nosocomial infections. Ann. Intern. Med. 2004, 140, 26–32. [Google Scholar] [CrossRef] [PubMed]
- Meng, L.; Mui, E.; Holubar, M.K.; Deresinski, S.C. Comprehensive guidance for antibiotic dosing in obese adults. Pharmacotherapy 2017, 37, 1415–1431. [Google Scholar] [CrossRef]
- Srinivas, N.R. Influence of morbid obesity on the clinical pharmacokinetics of various anti-infective drugs: Reappraisal using recent case studies-issues, dosing implications, and considerations. Am. J. Ther. 2018, 25, e224–e246. [Google Scholar] [CrossRef]
- Winter, M.A.; Guhr, K.N.; Berg, G.M. Impact of various body weights and serum creatinine concentrations on the bias and accuracy of the Cockcroft-Gault equation. Pharmacotherapy 2012, 32, 604–612. [Google Scholar] [CrossRef] [PubMed]
- Grissom, C.K.; Brown, S.M.; Kuttler, K.G.; Boltax, J.P.; Jones, J.; Jephson, A.R.; Orme, J.F., Jr. A modified sequential organ failure assessment score for critical care triage. Disaster Med. Public Health Prep. 2010, 4, 277–284. [Google Scholar] [CrossRef] [PubMed]
- Rahmatinejad, Z.; Reihani, H.; Tohidinezhad, F.; Rahmatinejad, F.; Peyravi, S.; Pourmand, A.; Abu-Hanna, A.; Eslami, S. Predictive performance of the SOFA and mSOFA scoring systems for predicting in-hospital mortality in the emergency department. Am. J. Emerg. Med. 2019, 37, 1237–1241. [Google Scholar] [CrossRef] [PubMed]
- Nault, V.; Pepin, J.; Beaudoin, M.; Perron, J.; Moutquin, J.M.; Valiquette, L. Sustained impact of a computer-assisted antimicrobial stewardship intervention on antimicrobial use and length of stay. J. Antimicrob. Chemother. 2017, 72, 933–940. [Google Scholar] [CrossRef] [PubMed]
- Counterweight Project Team. The impact of obesity on drug prescribing in primary care. Br. J. Gen. Pract. 2005, 55, 743–749. [Google Scholar]
- Papadimitriou-Olivgeris, M.; Aretha, D.; Zotou, A.; Koutsileou, K.; Aikaterini, Z.; Aikaterini, L.; Sklavou, C.; Marangos, M.; Fligou, F. The role of obesity in sepsis outcome among critically ill patients: A retrospective cohort analysis. Biomed. Res. Int. 2016, 2016, 5941279. [Google Scholar] [CrossRef] [Green Version]
- Charani, E.; Gharbi, M.; Frost, G.; Drumright, L.; Holmes, A. Antimicrobial therapy in obesity: A multicentre cross-sectional study. J. Antimicrob. Chemother. 2015, 70, 2906–2912. [Google Scholar] [CrossRef] [Green Version]
- Hall, R.G.; Payne, K.D.; Bain, A.M.; Rahman, A.P.; Nguyen, S.T.; Eaton, S.A.; Busti, A.J.; Vu, S.L.; Bedimo, R. Multicenter evaluation of vancomycin dosing: Emphasis on obesity. Am. J. Med. 2008, 121, 515–518. [Google Scholar] [CrossRef] [Green Version]
- Davis, S.L.; Scheetz, M.H.; Bosso, J.A.; Goff, D.A.; Rybak, M.J. Adherence to the 2009 consensus guidelines for vancomycin dosing and monitoring practices: A cross-sectional survey of U.S. hospitals. Pharmacotherapy 2013, 33, 1256–1263. [Google Scholar] [CrossRef]
- Rosini, J.M.; Grovola, M.R.; Levine, B.J.; Jasani, N.B. Prescribing habits of vancomycin in the Emergency Department: Are we dosing appropriately? J. Emerg. Med. 2013, 44, 979–984. [Google Scholar] [CrossRef]
- Roe, J.L.; Fuentes, J.M.; Mullins, M.E. Underdosing of common antibiotics for obese patients in the ED. Am. J. Emerg. Med. 2012, 30, 1212–1214. [Google Scholar] [CrossRef] [PubMed]
- Liang, S.Y.; Kumar, A. Empiric antimicrobial therapy in severe sepsis and septic shock: Optimizing pathogen clearance. Curr. Infect. Dis. Rep. 2015, 17, 493. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rhodes, A.; Evans, L.E.; Alhazzani, W.; Levy, M.M.; Antonelli, M.; Ferrer, R.; Kumar, A.; Sevransky, J.E.; Sprung, C.L.; Nunnally, M.E.; et al. Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock: 2016. Intensive Care Med. 2017, 43, 304–377. [Google Scholar] [CrossRef]
- Stevens, D.L.; Bisno, A.L.; Chambers, H.F.; Dellinger, E.P.; Goldstein, E.J.C.; Gorbach, S.L.; Hirschmann, J.V.; Kaplan, S.L.; Montoya, J.G.; Wade, J.C. Practice guidelines for the diagnosis and management of skin and soft tissue infections: 2014 update by the Infectious Diseases Society of America. Clin. Infect. Dis. 2014, 59, e10–e52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cox, K.K.; Alexander, B.; Livorsi, D.J.; Heintz, B.H. Clinical outcomes in patients hospitalized with cellulitis treated with oral clindamycin and trimethoprim-sulfamethoxazole: The role of weight-based dosing. J. Infect. 2017, 75, 486–492. [Google Scholar] [CrossRef]
- Cheatham, S.C.; Fleming, M.R.; Healy, D.P.; Chung, C.E.K.; Shea, K.M.; Humphrey, M.L.; Kays, M.B. Steady state pharmacokinetics and pharmacodynamics of piperacillin and tazobactam administered by prolonged infusion in obese patients. Int. J. Antimicrob. Agents 2013, 41, 52–56. [Google Scholar] [CrossRef] [PubMed]
- Chung, E.K.; Cheatham, S.C.; Fleming, M.R.; Healy, D.P.; Shea, K.M.; Kays, M.B. Population pharmacokinetics and pharmacodynamics of piperacillin and tazobactam administered by prolonged infusion in obese and nonobese patients. J. Clin. Pharmacol. 2015, 55, 899–908. [Google Scholar] [CrossRef] [PubMed]
Creatinine Clearance * | |||||
---|---|---|---|---|---|
Antimicrobial | >50 mL/min | 30–50 mL/min | 10–30 mL/min | <10 mL/min | |
Penicillins | |||||
ampicillin | 2000 mg q4h | 2000 mg q6h | 2000 mg q6h | 2000 mg q6h | |
penicillin (IV) | 4 million units q4h | 3 million units q4h | 3 million units q4h | 2 million units q4h | |
(PO) | 600 mg q6h | 600 mg q6h | 600 mg q6h | 600 mg q8h | |
piperacillin/ tazobactam | (CrCl > 40 mL/min) 3000 mg q4h or 4000 mg q6h | (CrCl 20–40 mL/min) 3000 mg q6h | (CrCl 0–20 mL/min) 2000 mg q6h | (CrCl 0–20 mL/min) 2000 mg q6h | |
Cephalosporins | |||||
(CrCl 35–50mL/min) | (CrCl 10–35 mL/min) | ||||
cefazolin | 2000 mg q4h | 2000 mg q8h | 2000 mg q12h | 2000 mg q24h | |
ceftriaxone | 2000 mg q12h | 2000 mg q12h | 2000 mg q12h | 2000 mg q12h | |
Quinolones | |||||
ciprofloxacin (IV) | 400 mg q8h | 400 mg q12h | 400 mg q24h | 400 mg q24h | |
(PO) | 750 mg q12h | 500 mg q12h | 500 mg q24h | 500 mg q24h | |
Aminoglycosides | |||||
gentamicin | 1 mg/kg q8h | 1 mg/kg q12h | 1 mg/kg q24h | 1 mg/kg q48h |
Characteristics | Good (80–100%) n = 47 | Moderate (20–79%) n = 31 | Poor (0–19%) n = 32 | Total Cohort N = 110 |
---|---|---|---|---|
Female sex | 25 (53) | 17 (55) | 17 (53) | 59 (54) |
Age (years), median (IQR) | 59 (54–66) | 66 (51–76) | 62 (57–65) | 62 (54–67) |
BMI (kg/m2), median (IQR) | 45.3 (41.8–50.2) | 43.7 (42.2–47.3) | 45.0 (42.3–49.2) | 44.9 (42.1–48.9) |
Weight (kg), median (IQR) | 127.0 (113.0–145.0) | 121.0 (107.5–136.9) | 122.0 (108.4–147.9) | 124.6 (111.2–142.8) |
Comorbidities | ||||
Immunosuppression | 11 (23) | 3 (10) | 3 (9) | 17 (15) |
Coronary artery disease | 15 (32) | 8 (26) | 12 (38) | 35 (32) |
Diabetes | 32 (68) | 19 (61) | 25 (78) | 76 (69) |
COPD | 10 (21) | 9 (29) | 8 (25) | 27 (25) |
Chronic kidney failure | 11 (23) | 5 (16) | 7 (22) | 23 (21) |
Charlson comorbidity index | ||||
0–3 | 17 (36) | 13 (42) | 15 (47) | 45 (41) |
4–6 | 26 (55) | 9 (29) | 9 (28) | 44 (40) |
≥7 | 4 (9) | 9 (29) | 8 (25) | 21 (19) |
Infection site | ||||
Urinary tract | 10 (21) | 11 (36) | 16 (50) | 37 (34) |
Skin and soft tissue | 11 (23) | 9 (29) | 7 (22) | 27 (25) |
Pulmonary | 8 (17) | 4 (13) | 1 (3) | 13 (12) |
Intra-abdominal | 2 (4) | 3 (10) | 1 (3) | 6 (5) |
Others a | 16 (34) | 4 (13) | 7 (22) | 27 (25) |
Severity | ||||
PBS, median (IQR) | 2 (1–4) | 1 (0–2) | 1 (0–3) | 2 (1–3) |
PBS ≥ 2 | 32 (68) | 11 (36) | 14 (44) | 57 (52) |
Sepsis on day 1 b | 37 (79) | 21 (68) | 16 (50) | 74 (67) |
Pathogens isolated | ||||
Gram-positive | ||||
S. aureus | 8 (17) | 3 (10) | 3 (9) | 14 (13) |
S. pneumoniae | 9 (19) | 2 (7) | 1 (3) | 12 (11) |
Others c | 12 (26) | 9 (29) | 8 (25) | 29 (26) |
Gram-negative | ||||
Enterobacteriaceae d | 13 (28) | 13 (42) | 19 (59) | 45 (41) |
Other e | 7 (15) | 4 (13) | 2 (6) | 13 (12) |
Polymicrobial infection | 5 (11) | 3 (10) | 2 (6) | 10 (9) |
Others | ||||
Consultation with an infectious disease specialist | 31 (66) | 13 (42) | 10 (31) | 54 (49) |
Outcomes | Good (80–100%) n = 47 | Moderate (20–79%) n = 31 | Poor (0–19%) n = 32 | Total Cohort N = 110 |
---|---|---|---|---|
Hospital outcomes | ||||
Time to defervescence (hours), median (IQR) | 40.4 (71.9–84.5) | 45.2 (17.9–84.5) | 53.7 (26.2–90.3) | 45 (15.4–87.6) |
WBC time to normalization, (hours), median (IQR) | 60.6 (24.4–144.8) | 70.6 (35.1–111.0) | 62.1 (43.8–109.9) | 68.3 (32.2–114.0) |
Sepsis a | 38 (81) | 23 (74) | 17 (53) * | 78 (71) |
Day 3 | 23/46 (50) | 16/31 (52) | 7/31 (23) * | 46/108 (43) |
Day 5 | 17/39 (44) | 5/26 (19) * | 7/23 (30) | 29/88 (33) |
Mechanical ventilation | 17 (36) | 9 (29) | 4 (13) * | 30 (27) |
Duration of mechanical ventilation (days), median (IQR) | 4 (2–6) | 3 (1–6) | 2 (1–7) | 3 (2–6) |
ICU LOS (hours), median (IQR) | 117.6 (67.8–204.7) | 107.9 (67.8–141.9) | 39.0 (27.4–109.3) | 99.7 (43.6–174.5) |
LOS (hours), median (IQR) | 258.1 (126.7–496.0) | 171.9 (117.9–293.3) * | 174.6 (98.8–289.1) * | 194.5 (114.8–417.4) |
30-day outcomes Readmission | ||||
All-causes | 4/41 (10) | 5/28 (18) | 2/32 (6) | 11/101 (11) |
Relapse | 1/41 (2) | 3/28 (11) | 1/32 (6) | 5/101 (5) |
Time to readmission (days), median (IQR) b | 13 (3–21) | 11 (5–19) | - | 11 (7–18) |
All-cause 30-day mortality | 6 (13) | 3 (10) | 0 | 9 (8) |
Factors | No. Adjusted Therapy/ Total (%) | Univariable OR (95% IC) | p Value | Multivariable OR (95% IC) | p Value |
---|---|---|---|---|---|
Number of antimicrobials | - | 2.19 (1.43–3.14) | <0.001 | 2.17 (1.40–3.37) | <0.001 |
Consultation with an infectious disease specialist | |||||
No | 16/56 (29) | reference | reference | ||
Yes | 31/54 (57) | 3.37 (1.53–7.44) | 0.003 | 3.33 (1.29–8.58) | 0.013 |
Sepsis on day 1 | |||||
No | 10/36 (28) | reference | |||
Yes | 37/74 (50) | 2.60 (1.10–6.14) | 0.03 | ||
BUN (mmol/L) | |||||
<7 | 7/32 (22) | reference | reference | ||
7–10.9 | 14/22 (64) | 6.25 (1.87–20.90) | 0.003 | 7.34 (1.83–29.48) | 0.005 |
≥11 | 25/52 (48) | 3.31 (1.22–8.98) | 0.02 | 2.51 (0.74–8.46) | 0.14 |
missing | 1/4 (25) | 1.190 (0.11–13.30) | 0.89 | 0.51 (0.03–8.49) | 0.6 |
APSS | |||||
No | 17/51 (33) | reference | |||
Yes | 30/59 (51) | 2.07 (0.95–4.49) | 0.066 | ||
Immunosuppression | |||||
No | 36/93 (39) | reference | |||
Yes | 11/17 (65) | 2.90 (0.99–8.54) | 0.05 | ||
Hemodialysis | |||||
No | 39/100 (39) | reference | reference | ||
Yes | 8/10 (80) | 6.26 (1.26–31.01) | 0.03 | 10.30 (1.62–65.56) | 0.014 |
Charlson comorbidity index | |||||
0–3 | 17/45 (38) | reference | |||
4–6 | 26/44 (59) | 2.38 (1.02–5.57) | 0.05 | ||
≥7 | 4/21 (19) | 0.388 (0.11–1.35) | 0.14 | ||
PBS | |||||
0–1 | 15/53 (28) | reference | |||
≥2 | 32/57 (56) | 3.24 (1.47–7.18) | 0.004 | ||
Infection site | |||||
Urinary | 10/37 (27) | reference | |||
Pulmonary | 8/13 (62) | 4.32 (1.14–16.37) | 0.03 | ||
Skin and soft tissue | 11/27 (41) | 1.86 (0.65–5.34) | 0.25 | ||
Other | 18/33 (55) | 3.24 (1.19–8.79) | 0.02 |
Factors | No. Unfavourable Outcomes/ Total (%) | Univariable OR (95% CI) | p Value | Multivariable OR (95% CI) | p Value |
---|---|---|---|---|---|
Age (years) | - | 1.05 (1.01–1.08) | 0.01 | 1.07 (1.02–1.12) | 0.009 |
BMI (kg/m2) | - | 1.02 (0.95–1.08) | 0.64 | ||
Charlson comorbidity index | - | 1.19 (1.02–1.38) | 0.02 | ||
Hemodialysis | |||||
No | 58/100 (58) | reference | |||
Yes | 2/10 (20) | 0.18 (0.04–0.90) | 0.04 | ||
PBS ≥ 2 | |||||
No | 15/53 (28) | reference | reference | ||
Yes | 45/57 (79) | 9.50 (3.97–22.75) | <0.001 | 7.30 (2.09–25.52) | 0.002 |
Sepsis on day 1 | |||||
No | 4/36 (11) | reference | reference | ||
Yes | 56/74 (76) | 24.89 (7.75–79.97) | <0.001 | 16.78 (3.93–71.63) | <0.001 |
Infection site | |||||
Urinary | 11/37 (30) | reference | reference | ||
Pulmonary | 10/13 (77) | 7.88 (1.81–34.28) | 0.01 | 7.52 (1.20–47.15) | 0.031 |
Skin and soft tissue | 20/27 (74) | 6.75 (2.22–20.55) | 0.001 | 7.79 (1.67–36.41) | 0.009 |
Other | 19/33 (58) | 3.21 (1.20–8.60) | 0.02 | 9.47 (1.99–45.10) | 0.005 |
BUN (mmol/L) | |||||
<7 | 9/32 (28) | reference | |||
7–10.9 | 16/22 (73) | 6.82 (2.02–22.95) | 0.002 | ||
≥11 | 35/52 (67) | 5.26 (2.01–13.80) | 0.001 | ||
missing | 0/4 (0) | - | |||
Appropriateness category | |||||
Good (80–100%) | 30/47 (64) | 2.94 (1.16–7.46) | 0.02 | ||
Moderate (20–79%) | 18/31 (58) | 2.31 (0.84–6.34) | 0.11 | ||
Poor (0–19%) | 12/32 (38) | reference | |||
Number of antimicrobials | - | 1.98 (1.34–2.93) | 0.001 | ||
Type of antimicrobial (based on PD) | |||||
Concentration- dependent | 1/11 (9) | reference | |||
Time- dependent | 25/38 (66) | 19.23 (2.21–167.11) | 0.007 | ||
Mixed | 34/61 (56) | 12.59 (1.52–104.58) | 0.02 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sirard, S.; Abou Chakra, C.N.; Langlois, M.-F.; Perron, J.; Carignan, A.; Valiquette, L. Is Antimicrobial Dosing Adjustment Associated with Better Outcomes in Patients with Severe Obesity and Bloodstream Infections? An Exploratory Study. Antibiotics 2020, 9, 707. https://doi.org/10.3390/antibiotics9100707
Sirard S, Abou Chakra CN, Langlois M-F, Perron J, Carignan A, Valiquette L. Is Antimicrobial Dosing Adjustment Associated with Better Outcomes in Patients with Severe Obesity and Bloodstream Infections? An Exploratory Study. Antibiotics. 2020; 9(10):707. https://doi.org/10.3390/antibiotics9100707
Chicago/Turabian StyleSirard, Stéphanie, Claire Nour Abou Chakra, Marie-France Langlois, Julie Perron, Alex Carignan, and Louis Valiquette. 2020. "Is Antimicrobial Dosing Adjustment Associated with Better Outcomes in Patients with Severe Obesity and Bloodstream Infections? An Exploratory Study" Antibiotics 9, no. 10: 707. https://doi.org/10.3390/antibiotics9100707
APA StyleSirard, S., Abou Chakra, C. N., Langlois, M. -F., Perron, J., Carignan, A., & Valiquette, L. (2020). Is Antimicrobial Dosing Adjustment Associated with Better Outcomes in Patients with Severe Obesity and Bloodstream Infections? An Exploratory Study. Antibiotics, 9(10), 707. https://doi.org/10.3390/antibiotics9100707