Multivariable Analysis of 169 Cases of Advanced Cutaneous Melanoma to Evaluate Antibiotic Exposure as Predictor of Survival to Anti-PD-1 Based Immunotherapies
Abstract
:1. Introduction
2. Materials and Methods
Statistical Analysis
3. Results
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Luther, C.A.; Swami, U.; Zhang, J.; Milhem, M.; Zakharia, Y. Advanced stage melanoma therapies: Detailing the present and exploring the future. Crit. Rev. Oncol. 2019, 133, 99–111. [Google Scholar] [CrossRef] [PubMed]
- Korn, E.L.; Liu, P.-Y.; Lee, S.J.; Chapman, J.-A.W.; Niedzwiecki, D.; Suman, V.J.; Moon, J.; Sondak, V.K.; Atkins, M.B.; Eisenhauer, E.A.; et al. Meta-Analysis of Phase II Cooperative Group Trials in Metastatic Stage IV Melanoma to Determine Progression-Free and Overall Survival Benchmarks for Future Phase II Trials. J. Clin. Oncol. 2008, 26, 527–534. [Google Scholar] [CrossRef] [PubMed]
- Hodi, F.S.; Chiarion-Sileni, V.; Gonzalez, R.; Grob, J.-J.; Rutkowski, P.; Cowey, C.L.; Lao, C.D.; Schadendorf, D.; Wagstaff, J.; Dummer, R.; et al. Nivolumab plus ipilimumab or nivolumab alone versus ipilimumab alone in advanced melanoma (CheckMate 067): 4-year outcomes of a multicentre, randomised, phase 3 trial. Lancet Oncol. 2018, 19, 1480–1492. [Google Scholar] [CrossRef]
- Tray, N.; Weber, J.S.; Adams, S. Predictive Biomarkers for Checkpoint Immunotherapy: Current Status and Challenges for Clinical Application. Cancer Immunol. Res. 2018, 6, 1122–1128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Swami, U.; Zakharia, Y.; Zhang, J. Understanding Microbiome Effect on Immune Checkpoint Inhibition in Lung Cancer. J. Immunother. 2018, 41, 359–360. [Google Scholar] [CrossRef] [PubMed]
- Pinato, D.J.; Gramenitskaya, D.; Altmann, D.M.; Boyton, R.J.; Mullish, B.H.; Marchesi, J.R.; Bower, M. Antibiotic therapy and outcome from immune-checkpoint inhibitors. J. Immunother. Cancer 2019, 7, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Hakozaki, T.; Okuma, Y.; Omori, M.; Hosomi, Y. Impact of prior antibiotic use on the efficacy of nivolumab for non-small cell lung cancer. Oncol. Lett. 2019, 17, 2946–2952. [Google Scholar] [CrossRef] [Green Version]
- Kaderbhai, C.; Richard, C.; Fumet, J.D.; Aarnink, A.; Foucher, P.; Coudert, B.; Favier, L.; Lagrange, A.; Limagne, E.; Boidot, R.; et al. Antibiotic Use Does Not Appear to Influence Response to Nivolumab. Anticancer Res. 2017, 37, 3195–3200. [Google Scholar] [CrossRef]
- Khan, U.; Peña, C.; Brouwer, J.; Hoffman, K.; Choudhury, A.R.; Zhang, C.; Thakkar, P.; Betel, D.; Sarkar, S.; Sonnenberg, G.; et al. Impact of antibiotic use on response to treatment with immune checkpoint inhibitors. J. Clin. Oncol. 2019, 37, 143. [Google Scholar] [CrossRef]
- Khan, M.S.; Radakovich, N.; Ornstein, M.; Gupta, S. Concomitant antibiotic use and its effect on immune-checkpoint inhibitor efficacy in patients with advanced urothelial carcinoma. Ann. Oncol. 2020, 31, S597. [Google Scholar] [CrossRef]
- Seymour, L.; Bogaerts, J.; Perrone, A.; Ford, R.; Schwartz, L.H.; Mandrekar, S.; Lin, N.U.; Litière, S.; Dancey, J.; Chen, A.; et al. iRECIST: Guidelines for response criteria for use in trials testing immunotherapeutics. Lancet Oncol. 2017, 18, e143–e152. [Google Scholar] [CrossRef] [Green Version]
- Manola, J.; Atkins, M.; Ibrahim, J.; Kirkwood, J. Prognostic Factors in Metastatic Melanoma: A Pooled Analysis of Eastern Cooperative Oncology Group Trials. J. Clin. Oncol. 2000, 18, 3782–3793. [Google Scholar] [CrossRef]
- Zhan, H.; Ma, J.-Y.; Jian, Q.-C. Prognostic significance of pretreatment neutrophil-to-lymphocyte ratio in melanoma patients: A meta-analysis. Clin. Chim. Acta 2018, 484, 136–140. [Google Scholar] [CrossRef] [PubMed]
- Gopalakrishnan, V.; Spencer, C.N.; Nezi, L.; Reuben, A.; Andrews, M.C.; Karpinets, T.V.; Prieto, P.A.; Vicente, D.; Hoffman, K.; Wei, S.C.; et al. Gut microbiome modulates response to anti–PD-1 immunotherapy in melanoma patients. Science 2017, 359, 97–103. [Google Scholar] [CrossRef] [Green Version]
- Pinato, D.J.; Howlett, S.; Ottaviani, D.; Urus, H.; Patel, A.; Mineo, T.; Brock, C.; Power, D.; Hatcher, O.; Falconer, A.; et al. Association of Prior Antibiotic Treatment With Survival and Response to Immune Checkpoint Inhibitor Therapy in Patients With Cancer. JAMA Oncol. 2019, 5, 1774–1778. [Google Scholar] [CrossRef]
- Elkrief, A.; El Raichani, L.; Richard, C.; Messaoudene, M.; Belkaid, W.; Malo, J.; Belanger, K.; Miller, W.; Jamal, R.; Letarte, N.; et al. Antibiotics are associated with decreased progression-free survival of advanced melanoma patients treated with immune checkpoint inhibitors. OncoImmunology 2019, 8, e1568812. [Google Scholar] [CrossRef] [PubMed]
- DeRosa, L.; Hellmann, M.; Spaziano, M.; Halpenny, D.; Fidelle, M.; Rizvi, H.; Long, N.; Plodkowski, A.; Arbour, K.; Chaft, J.; et al. Negative association of antibiotics on clinical activity of immune checkpoint inhibitors in patients with advanced renal cell and non-small-cell lung cancer. Ann. Oncol. 2018, 29, 1437–1444. [Google Scholar] [CrossRef]
- Routy, B.; Chatelier, E.L.; Derosa, L.; Duong, C.P.M.; Alou, M.T.; Daillere, R.; Fluckiger, A.; Meaasoudene, M.; Rauber, C.; Roberti, M.P.; et al. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science 2018, 359, 91–97. [Google Scholar] [CrossRef] [Green Version]
- Wargo, J.A.; Reuben, A.; Cooper, Z.A.; Oh, K.S.; Sullivan, R.J. Immune Effects of Chemotherapy, Radiation, and Targeted Therapy and Opportunities for Combination with Immunotherapy. Semin. Oncol. 2015, 42, 601–616. [Google Scholar] [CrossRef] [Green Version]
- McBride, S.; Sherman, E.; Tsai, C.J.; Baxi, S.; Aghalar, J.; Eng, J.; Zhi, W.I.; McFarland, D.; Michel, L.S.; Young, R.; et al. Randomized Phase II Trial of Nivolumab With Stereotactic Body Radiotherapy Versus Nivolumab Alone in Metastatic Head and Neck Squamous Cell Carcinoma. J. Clin. Oncol. 2020. [Google Scholar] [CrossRef]
- McQuade, J.L.; Daniel, C.R.; Hess, K.R.; Mak, C.; Wang, D.Y.; Rai, R.R.; Park, J.J.; Haydu, L.E.; Spencer, C.; Wongchenko, M.; et al. Association of body-mass index and outcomes in patients with metastatic melanoma treated with targeted therapy, immunotherapy, or chemotherapy: A retrospective, multicohort analysis. Lancet Oncol. 2018, 19, 310–322. [Google Scholar] [CrossRef] [Green Version]
Variable | Level | N = 169 | % |
---|---|---|---|
Gender | Female | 59 | 34.9 |
Male | 110 | 65.1 | |
Race | White | 168 | 100.0 |
Missing | 1 | - | |
Ethnicity | Non-Hispanic | 169 | 100.0 |
Smoking Status | Current | 32 | 18.9 |
Former | 67 | 39.6 | |
Never | 70 | 41.4 | |
History of another cancer | No | 159 | 94.1 |
Yes | 10 | 5.9 | |
Performance Status | 0 | 74 | 64.3 |
1 | 37 | 32.2 | |
2 | 4 | 3.5 | |
Missing | 54 | - | |
Brain Metastasis | No | 130 | 76.9 |
Yes | 39 | 23.1 | |
Liver Metastasis | No | 140 | 82.8 |
Yes | 29 | 17.2 | |
BRAF Mutation | No | 76 | 50.0 |
Yes | 76 | 50.0 | |
Missing | 17 | - | |
Prior Ipilimumab | No | 114 | 67.9 |
Yes | 54 | 32.1 | |
Missing | 1 | - | |
Prior BRAF inhibitors | No | 149 | 88.7 |
Yes | 19 | 11.3 | |
Missing | 1 | - | |
Radiation (within previous 3 months) | No | 143 | 84.6 |
Yes | 26 | 15.4 | |
Antibiotics (within previous 2 months) | No | 136 | 81.9 |
Yes | 30 | 18.1 | |
Missing | 3 | - | |
Line of Therapy | First | 100 | 59.2 |
Second | 49 | 29.0 | |
Third | 15 | 8.9 | |
Fourth | 5 | 3.0 | |
Concurrent Radiation | No | 147 | 87.0 |
Yes | 22 | 13.0 | |
Regimen | Combination | 58 | 34.3 |
Single | 111 | 65.7 | |
Neutrophil to lymphocyte ratio | ≤4 | 113 | 68.5 |
>4 | 52 | 31.5 | |
Missing | 4 | - |
Variable | N | Missing | Minimum | Maximum | Median | Mean | Standard Deviation |
---|---|---|---|---|---|---|---|
Age (years) | 169 | 0 | 24.00 | 98.00 | 63.00 | 62.12 | 15.74 |
Body mass index | 166 | 3 | 17.35 | 60.52 | 28.32 | 29.40 | 6.39 |
White blood cells (1000/mm3) | 167 | 2 | 2.30 | 52.00 | 7.10 | 8.30 | 4.64 |
Hemoglobin (g/dL) | 167 | 2 | 7.20 | 18.10 | 13.60 | 13.30 | 2.00 |
Platelets (1000/mm3) | 166 | 3 | 93.00 | 711.00 | 236.00 | 255.77 | 93.93 |
Absolute neutrophil count (cells/mm3) | 165 | 4 | 4.94 | 41,590.00 | 4650.00 | 5601.81 | 3928.37 |
Absolute lymphocyte count (cells/mm3) | 165 | 4 | 2.02 | 4680.00 | 1524.00 | 1625.87 | 748.77 |
Eosinophils (cells/mm3) | 164 | 5 | 0.00 | 3120.00 | 180.00 | 236.43 | 297.53 |
Albumin | 166 | 3 | 2.30 | 5.00 | 4.10 | 4.01 | 0.49 |
Duration of Anti-PD-1 Therapy (months) | 169 | 0 | 0.07 | 62.52 | 5.59 | 9.68 | 9.82 |
Length of follow-up (months) | 169 | 0 | 0.89 | 62.52 | 18.46 | 20.08 | 13.55 |
Covariate | Level | N | Progression-Free Survival | |||
---|---|---|---|---|---|---|
Hazard Ratio | 95% CI | p-Value | ||||
Gender | Female | 59 | 1.09 | 0.75 | 1.60 | 0.65 |
Male | 110 | Ref | - | - | ||
Smoking Status | Current | 32 | 1.03 | 0.60 | 1.77 | 0.80 |
Former | 67 | 1.14 | 0.77 | 1.70 | ||
Never | 70 | Ref | - | - | ||
History of another cancer | Yes | 10 | 0.90 | 0.42 | 1.93 | 0.78 |
No | 159 | Ref | - | - | ||
Brain Metastasis | Yes | 39 | 1.84 | 1.22 | 2.76 | <0.01 |
No | 130 | Ref | - | - | ||
Liver Metastasis | Yes | 29 | 1.47 | 0.91 | 2.36 | 0.11 |
No | 140 | Ref | - | - | ||
BRAF Mutation | Yes | 76 | 0.84 | 0.58 | 1.22 | 0.36 |
No | 76 | Ref | - | - | ||
Prior Systemic Therapy | Yes | 69 | 0.94 | 0.64 | 1.36 | 0.73 |
No | 100 | Ref | - | - | ||
Prior Ipilimumab | Yes | 54 | 0.95 | 0.64 | 1.41 | 0.81 |
No | 114 | Ref | - | - | ||
Prior BRAF inhibitors | Yes | 19 | 0.96 | 0.54 | 1.72 | 0.90 |
No | 149 | Ref | - | - | ||
Radiation (Within Previous 3 Months) | Yes | 26 | 1.60 | 1.00 | 2.58 | 0.05 |
No | 143 | Ref | - | - | ||
Antibiotics (Within Previous 2 months) | Yes | 30 | 1.28 | 0.80 | 2.04 | 0.30 |
No | 136 | Ref | - | - | ||
Neutrophil to lymphocyte ratio | >4 | 52 | 1.70 | 1.16 | 2.50 | <0.01 |
≤4 | 113 | Ref | - | - | ||
Age (years) | Units = 10 | 169 | 1.05 | 0.93 | 1.17 | 0.46 |
Body mass index | Units = 5 | 166 | 1.04 | 0.89 | 1.20 | 0.64 |
White blood cells (1000/mm3) | Units = 1 | 167 | 1.08 | 1.03 | 1.13 | <0.01 |
Hemoglobin (g/dL) | Units = 1 | 167 | 0.98 | 0.89 | 1.07 | 0.63 |
Platelets (1000/mm3) | Units = 100 | 166 | 1.07 | 0.88 | 1.29 | 0.52 |
Absolute neutrophil count (cells/mm3) | Units = 1000 | 165 | 1.11 | 1.05 | 1.17 | <0.01 |
Absolute lymphocyte count (cells/mm3) | Units = 1000 | 165 | 0.78 | 0.59 | 1.04 | 0.08 |
Eosinophils (cells/mm3) | Units = 100 | 164 | 1.00 | 0.91 | 1.09 | 0.92 |
Albumin (g/dL) | Units = 1 | 166 | 0.63 | 0.44 | 0.89 | <0.01 |
Covariate | Level | N | Overall Survival | |||
---|---|---|---|---|---|---|
Hazard Ratio | 95% CI | p-Value | ||||
Gender | Female | 59 | 0.98 | 0.60 | 1.59 | 0.93 |
Male | 110 | Ref | - | - | ||
Smoking Status | Current | 32 | 1.25 | 0.66 | 2.36 | 0.79 |
Former | 67 | 1.06 | 0.63 | 1.76 | ||
Never | 70 | Ref | - | - | ||
History of another cancer | Yes | 10 | 0.57 | 0.18 | 1.82 | 0.35 |
No | 159 | Ref | - | - | ||
Brain metastasis | Yes | 39 | 3.41 | 2.13 | 5.46 | <0.01 |
No | 130 | Ref | - | - | ||
Liver metastasis | Yes | 29 | 2.06 | 1.22 | 3.48 | <0.01 |
No | 140 | Ref | - | - | ||
BRAF Mutation | Yes | 76 | 0.74 | 0.46 | 1.20 | 0.22 |
No | 76 | Ref | - | - | ||
Prior Systemic Therapy | Yes | 69 | 1.14 | 0.72 | 1.82 | 0.57 |
No | 100 | Ref | - | - | ||
Prior Ipilimumab | Yes | 54 | 1.16 | 0.71 | 1.88 | 0.55 |
No | 114 | Ref | - | - | ||
Prior BRAF inhibitors | Yes | 19 | 1.36 | 0.70 | 2.66 | 0.37 |
No | 149 | Ref | - | - | ||
Radiation (Within Previous 3 Months) | Yes | 26 | 2.35 | 1.36 | 4.06 | <0.01 |
No | 143 | Ref | - | - | ||
Antibiotics (Within Previous 2 months) | Yes | 30 | 1.73 | 1.00 | 2.99 | 0.05 |
No | 136 | Ref | - | - | ||
Neutrophil to lymphocyte ratio | >4 | 52 | 2.28 | 1.42 | 3.63 | <0.01 |
≤4 | 113 | Ref | - | - | ||
Age (years) | Units = 10 | 169 | 1.11 | 0.95 | 1.29 | 0.19 |
Body mass index | Units = 5 | 166 | 0.98 | 0.81 | 1.19 | 0.84 |
White blood cells (1000/mm3) | Units = 1 | 167 | 1.07 | 1.03 | 1.12 | <0.01 |
Hemoglobin (g/dL) | Units = 1 | 167 | 0.89 | 0.79 | 0.99 | 0.04 |
Platelets (1000/mm3) | Units = 100 | 166 | 1.12 | 0.87 | 1.43 | 0.38 |
Absolute neutrophil count (cells/mm3) | Units = 1000 | 165 | 1.10 | 1.05 | 1.15 | <0.01 |
Absolute lymphocyte count (cells/mm3) | Units = 1000 | 165 | 0.78 | 0.55 | 1.10 | 0.16 |
Eosinophils (cells/mm3) | Units = 100 | 164 | 0.99 | 0.88 | 1.11 | 0.80 |
Albumin (g/dL) | Units = 1 | 166 | 0.42 | 0.28 | 0.62 | <0.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Swami, U.; Chennamadhavuni, A.; Borcherding, N.; Bossler, A.D.; Mott, S.L.; Garje, R.; Zakharia, Y.; Milhem, M. Multivariable Analysis of 169 Cases of Advanced Cutaneous Melanoma to Evaluate Antibiotic Exposure as Predictor of Survival to Anti-PD-1 Based Immunotherapies. Antibiotics 2020, 9, 740. https://doi.org/10.3390/antibiotics9110740
Swami U, Chennamadhavuni A, Borcherding N, Bossler AD, Mott SL, Garje R, Zakharia Y, Milhem M. Multivariable Analysis of 169 Cases of Advanced Cutaneous Melanoma to Evaluate Antibiotic Exposure as Predictor of Survival to Anti-PD-1 Based Immunotherapies. Antibiotics. 2020; 9(11):740. https://doi.org/10.3390/antibiotics9110740
Chicago/Turabian StyleSwami, Umang, Adithya Chennamadhavuni, Nicholas Borcherding, Aaron D. Bossler, Sarah L. Mott, Rohan Garje, Yousef Zakharia, and Mohammed Milhem. 2020. "Multivariable Analysis of 169 Cases of Advanced Cutaneous Melanoma to Evaluate Antibiotic Exposure as Predictor of Survival to Anti-PD-1 Based Immunotherapies" Antibiotics 9, no. 11: 740. https://doi.org/10.3390/antibiotics9110740
APA StyleSwami, U., Chennamadhavuni, A., Borcherding, N., Bossler, A. D., Mott, S. L., Garje, R., Zakharia, Y., & Milhem, M. (2020). Multivariable Analysis of 169 Cases of Advanced Cutaneous Melanoma to Evaluate Antibiotic Exposure as Predictor of Survival to Anti-PD-1 Based Immunotherapies. Antibiotics, 9(11), 740. https://doi.org/10.3390/antibiotics9110740