Impacts of Multidrug-Resistant Pathogens and Inappropriate Initial Antibiotic Therapy on the Outcomes of Neonates with Ventilator-Associated Pneumonia
Abstract: Background
1. Introduction
2. Methods
2.1. Patients, Study Design, and Setting
2.2. Definition
2.3. Data Collection
2.4. Statistical Analysis
2.5. Availability of Data and Materials
2.6. Ethics Approval and Consent to Participate
3. Results
3.1. Epidemiology of VAP and the Microorganisms
3.2. Comparisons between MDR–VAP and Non-MDR–VAP
3.3. Therapeutic Outcomes and Impacts of Inappropriate Initial Antibiotics
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
NBBAL | nonbronchoscopic bronchoalveolar lavage |
CDC | Centers for Disease Control and Prevention |
CI | confidence interval |
CoNS | coagulase-negative staphylococcus |
CVC | central venous catheter |
CGMH | Chang Gung Memorial Hospital |
GNB | gram-negative bacteremia |
HAIs | healthcare-associated infections |
LOD | late-onset disease |
MDR | multidrug-resistant |
MDR–VAP | MDR-associated VAP |
NTISS | Neonatal Therapeutic Intervention Scoring System |
OR | odds ratio |
TPN | total parenteral nutrition |
VAP | ventilator-associated pneumonia |
Appendix A
Radiological Signs | Patients with One or More (in Patients with Underlying Diseases Two or More) Chest X-rays with One of the Following Findings: |
---|---|
-new or progressive and persistent infiltrate | |
-consolidation | |
-cavitation | |
-pneumatoceles | |
Clinical signs and symptoms | Worsening of gas exchange [e.g., oxygen desaturations (e.g., pulse oximetry < 94%), increased oxygen requirements, or increased ventilation demand] and three of the following: |
-temperature instability with no other recognized cause | |
-leukopenia ( < 4000 WBC/mm3) or leukocytosis ( > 15,000 WBC/mm3) and left shift ( > 10% band forms) | |
-new onset of purulent sputum, or change in the character of sputum, or increase in respiratory secretions, or increased suctioning requirements. | |
-apnea, tachypnea, nasal flaring with retraction of chest wall or grunting | |
-wheezing, rales, or rhonchi | |
-cough | |
-bradycardia (<100 beats/min) or tachycardia (>170 beats/min) | |
Microbiological findings | At least one of the followings: |
-positive growth in blood culture not related to another source of infection | |
-positive growth pleural fluid culture | |
-positive quantitative culture from a minimal contaminated low respiratory tract specimen [e.g. BAL (≥104 CFU/ml) or protected specimen brushing (≥103 CFU/ml)] | |
-≥5% BAL-obtained cells contain intracellular bacteria on direct microscopic examination (e.g., Gram stain) | |
-histopathological exam shows at least one of the following criteria for pneumonia abscess formation or foci of consolidation with intense PMN accumulation in bronchioles and alveoli; positive quantitative culture of lung parenchyma (≥104 CFU/g tissue), or evidence of lung parenchyma invasion by fungal hyphae or pseudohyphae |
References
- Cernada, M.; Brugada, M.; Golombek, S.; Vento, M. Ventilator-associated pneumonia in neonatal patients: An update. Neonatology 2014, 105, 98–107. [Google Scholar] [CrossRef] [PubMed]
- Chu, S.M.; Yang, M.C.; Hsiao, H.F.; Hsu, J.F.; Lien, R.; Chiang, M.C.; Fu, R.H.; Huang, H.R.; Hsu, H.K.; Tsai, M.H. One-week versus 2-day ventilator circuit change in neonates with prolonged ventilation: Cost effectiveness and impact on ventilator associated pneumonia. Infect. Control Hosp. Epidemiol. 2015, 36, 287–293. [Google Scholar] [CrossRef] [PubMed]
- Mishra, D.R.; Shah, N.; Shah, D.S. Incidence and outcome of ventilator associated pneumonia in ICU of a tertiary care hospital in Nepal. JNMA J. Nepal Med. Assoc. 2017, 56, 304–308. [Google Scholar] [CrossRef] [PubMed]
- Goerens, A.; Lehnick, D.; Büttcher, M.; Daetwyler, K.; Fontana, M.; Genet, P.; Lura, M.; Morgillo, D.; Pilgrim, S.; Schwendener-Scholl, K.; et al. Neonatal ventilator associated pneumonia: A quality improvement initiative focusing on antimicrobial stewardship. Front Pediatr. 2018, 6, 262. [Google Scholar] [CrossRef] [PubMed]
- Cantey, J.B.; Wozniak, P.S.; Sanchez, P.J. Prospective surveillance of antibiotic use in the neonatal intensive care unit: Results from the SCOUT study. Pediatr. Infect. Dis. J. 2015, 34, 267–272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, S.; Shankar, B.; Arya, S.; Deb, M.; Chellani, H. Healthcare associated infections in neonatal intensive care unit and its correlation with environmental surveillance. J. Infect. Public Health 2018, 11, 275–279. [Google Scholar] [CrossRef] [PubMed]
- Tan, B.; Xian-Yang, X.; Zhang, X.; Peng-Zhou, X.; Wang, P.; Xue, J.; Huang, L.J.; Li-Li, Y.; Fu-Qiu, J. Epidemiology of pathogens and drug resistance of ventilator-associated pneumonia in Chinese neonatal intensive care units: A meta-analysis. Am. J. Infect. Control 2014, 42, 902–910. [Google Scholar] [CrossRef]
- Fleischmann-Struzek, C.; Goldfarb, D.M.; Schlattmann, P.; Schlapbach, L.J.; Reinhart, K.; Kissoon, N. The global burden of pediatric and neonatal sepsis: A systemic review. Lancet Respir. Med. 2018, 6, 223–230. [Google Scholar] [CrossRef]
- Achten, N.B.; Klingenberg, C.; Benitz, W.E.; Stocker, M.; Schlapbach, L.J.; Giannoni, E.; Bokelaar, R.; Driessen, G.J.A.; Brodin, P.; Uthaya, S.; et al. Association of use of the neonatal early-onset sepsis calculator with reduction in antibiotic therapy and safety: A systemic review and meta-analysis. JAMA Pediatr. 2019, 173, 1032–1040. [Google Scholar] [CrossRef]
- Fjalstad, J.W.; Esaiassen, E.; Juvet, L.K.; van den Anker, J.N.; Klingenberg, C. Antibiotic therapy in neonates and impact on gut microbiota and antibiotic resistance development: A systemic review. J. Antimicrob. Chemother. 2018, 73, 569–580. [Google Scholar] [CrossRef] [Green Version]
- Rueda, M.S.; Calderon-Anyosa, R.; Gonzales, J.; Turin, C.G.; Zea-Vera, A.; Zegarra, J.; Bellomo, S.; Cam, L.; Castenada, A.; Ochoa, T.J.; et al. Antibiotic overuse in premature low birth weight infants in a developing country. Pediatr. Infect. Dis. J. 2019, 38, 302–307. [Google Scholar] [CrossRef] [PubMed]
- Esaiassen, E.; Fjalstad, J.W.; Juvet, L.K.; van den Anker, J.N.; Klingenberg, C. Antibiotic exposure in neonates and early adverse outcomes: A systemic review and meta-analysis. J. Antimicrob. Chemother. 2017, 72, 1858–1870. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ting, J.Y.; Roberts, A.; Sherlock, R.; Ojah, C.; Cieslak, Z.; Dunn, M.; Barinngton, K.; Yoon, E.W.; Shah, P.S. Duration of initial empirical antibiotic therapy and outcomes in very low birth weight infants. Pediatrics 2019, 143, e20182286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mukhopadhyay, S.; Sengupta, S.; Puopolo, K.M. Challenges and opportunities for antibiotic stewardship among preterm infants. Arch. Dis. Child. Fetal Neonatal. Ed. 2019, 104, F327–F332. [Google Scholar] [CrossRef] [PubMed]
- Obiero, C.W.; Seale, A.C.; Berkley, J.A. Empiric treatment of neonatal sepsis in developing countries. Pediatr. Infect. Dis. J. 2015, 34, 659–661. [Google Scholar] [CrossRef]
- Fuchs, A.; Bielicki, J.; Mathur, S.; Sharland, M.; Van Den Anker, J.N. Reviewing the WHO guidelines for antibiotic use for sepsis in neonates and children. Paediatr. Int. Child Health 2018, 38 (Suppl. 1), S3–S35. [Google Scholar] [CrossRef] [Green Version]
- Iosifidis, E.; Pitsava, G.; Roilides, E. Ventilator-associated pneumonia in neonates and children: A systemic analysis of diagnostic methods and prevention. Future Microbiol. 2018, 13, 1431–1446. [Google Scholar] [CrossRef]
- Nazir, A. Multidrug-resistant Acinetobacter septicemia in neonates: A study from a teaching hospital of Northern India. J. Lab. Physicians 2019, 11, 23–28. [Google Scholar] [CrossRef]
- Folgori, L.; Bielicki, J.; Heath, P.T.; Sharland, M. Antimicrobial-resistant Gram-negative infections in neonates: Burden of disease and challenges in treatment. Curr. Opin. Infect. Dis. 2017, 30, 281–288. [Google Scholar] [CrossRef]
- Tsai, M.H.; Chu, S.M.; Hsu, J.F.; Lien, R.; Huang, H.R.; Chiang, M.C.; Fu, H.R.; Lee, C.W.; Huang, Y.C. Risk factors and outcomes for multidrug-resistant Gram-negative bacteremia in the NICU. Pediatrics 2014, 133, e322–e329. [Google Scholar] [CrossRef] [Green Version]
- Dell’Orto, V.; Bourgeois-Nicolaos, N.; Rouard, C.; Romain, O.; Shankar-Aguilera, S.; Doucet-Populaire, F.; de Luca, D. Cell count analysis from nonbronchoscopic bronchoalveolar lavage in preterm infants. J. Pediatr. 2018, 200, 30–37.e2. [Google Scholar] [CrossRef] [PubMed]
- Fujitani, S.; Yu, V.L. Diagnosis of ventilator-associated pneumonia: Focus on nonbronchoscopic techniques (nonbronchoscopic bronchoalveolar lavage, including mini-BAL, blinded protected specimen brush, and blinded bronchial sampling) and endotracheal aspirates. J. Intensive Care Med. 2006, 21, 17–21. [Google Scholar] [CrossRef] [PubMed]
- Dell’Orto, V.; Raschetti, R.; Centorrino, R.; Montane, A.; Tissieres, P.; Yousef, N.; De Luca, D. Short and long-term respiratory outcomes in neonates with ventilator-associated pneumonia. Pediatric Pulmonol. 2019, 54, 1982–1988. [Google Scholar]
- Webb, B.J.; Sorensen, J.; Jephson, A.; Mecham, I.; Dean, N.C. Broad-spectrum antibiotic use and poor outcomes in community-onset pneumonia: A cohort study. Eur. Respir. J. 2019, 4, 1900057. [Google Scholar] [CrossRef] [PubMed]
- Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing: Twenty-second Informational Supplement M100-S22; CLSI: Wayne, PA, USA, 2012. [Google Scholar]
- Gandra, S.; Tseng, K.K.; Arora, A.; Bhowmik, B.; Robinson, M.L.; Panigrahi, B.; Laxminarayan, R.; Klein, E.Y. The mortality burden of multidrug-resistant pathogens in India: A retrospective, observational study. Clin. Infect. Dis. 2019, 69, 563–570. [Google Scholar] [CrossRef] [Green Version]
- Gleason, C.; Juul, S. Avery’s Diseases of the Newborn, 10th ed.; Elsevier: London, UK, 2017. [Google Scholar]
- Dorling, J.S.; Field, D.J.; Manktelow, B. Neonatal disease severity scoring systems. Arch. Dis. Child Fetal Neonatal. Ed. 2005, 90, F11–F16. [Google Scholar] [CrossRef]
- Strich, J.R.; Heil, E.L.; Masur, H. Considerations for empiric antimicrobial therapy in sepsis and septic shock in an era of antimicrobial resistance. J. Infect. Dis. 2020, 222 (Suppl. 2), S119–S131. [Google Scholar] [CrossRef]
- Martin-Loeches, I.; Rodriguez, A.H.; Torres, A. New guidelines for hospital-acquired pneumonia/ventilator-associated pneumonia: USA vs. Europe. Curr. Opin. Crit. Care 2018, 24, 347–352. [Google Scholar] [CrossRef]
- MacFadden, D.R.; Coburn, B.; Shah, N.; Robicsek, A.; Savage, R.; Elligsen, M.; Daneman, N. Utility of prior cultures in predicting antibiotic resistance of bloodstream infections due to Gram-negative pathogens: A multicentre observational cohort study. Clin. Microbiol. Infect. 2018, 24, 493–499. [Google Scholar] [CrossRef] [Green Version]
- Thatrimontrichai, A.; Apisarnthanarak, A.; Chanvitan, P.; Janjindamai, W.; Dissaneevate, S.; Maneenil, G. Risk factors and outcomes of carbapenem-resistant Acinetobacter baumannii bacteremia in neonatal intensive care unit: A case-case-control study. Pediatr. Infect. Dis. J. 2013, 32, 140–145. [Google Scholar] [CrossRef]
- Nakwan, N.; Wannaro, J.; Thongmak, T.; Pornladnum, P.; Saksawad, R.; Nakwan, N.; Chokephaibulkit, K. Safety in treatment of ventilator-associated pneumonia due to extensive drug-resistant Acinetobacter baumannii with aerosolized colistin in neonates: A preliminary report. Pediatr. Pulmonol. 2011, 46, 60–66. [Google Scholar] [CrossRef]
- Paul, M.; Dickstein, Y.; Raz-Pasteur, A. Antibiotic de-escalation for bloodstream infections and pneumonia: Systemic review and meta-analysis. Clin. Microbiol. Infect. 2016, 22, 960–967. [Google Scholar] [CrossRef] [PubMed]
- Azab, S.F.; Sherbiny, H.S.; Saleh, S.H.; Elsaeed, W.F.; Elshafiey, M.M.; Siam, A.G.; Mohamad, A.A.; Alghobashy, A.A.; Bendary, E.A.; Basset, M.A.A. Reducing ventilator-associated pneumonia in neonatal intensive care unit using “VAP prevention Bundle”: A cohort study. BMC Infect. Dis. 2015, 15, 314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jacobs Pepin, B.; Lesslie, D.; Berg, W.; Spaulding, A.B.; Pokora, T. ZAP-VAP: A quality improvement initiative to decrease ventilator-associated pneumonia in the neonatal intensive care unit, 2012–2016. Adv. Neonatal Care 2019, 19, 253–261. [Google Scholar] [CrossRef]
- Tsai, M.H.; Hsu, J.F.; Chu, S.M.; Lien, R.; Huang, H.R.; Chiang, M.C.; Fu, R.H.; Lee, C.W.; Huang, Y.C. Incidence, clinical characteristics and risk factors for adverse outcome in neonates with late-onset sepsis. Pediatr. Infect. Dis. J. 2014, 33, e7–e13. [Google Scholar] [CrossRef] [PubMed]
- MacFadden, D.R.; Coburn, B.; Shah, N.; Robicsek, A.; Savage, R.; Elligsen, M.; Daneman, N. Decision-support models for empiric antibiotic selection in gram-negative bloodstream infections. Clin. Microbiol. Infect. 2019, 25, 108.e1–108.e7. [Google Scholar] [CrossRef] [Green Version]
- Canadian Critical Care Trials Group. A randomized trial of diagnostic techniques for ventilator-associated pneumonia. N. Engl. J. Med. 2006, 355, 2619–2630. [Google Scholar] [CrossRef] [PubMed]
- Sachdev, A.; Chugh, K.; Sethi, M.; Gupta, D.; Wattal, C.; Menon, G. Diagnosis of ventilator-associated pneumonia in children in resource-limited setting: A comparative study of bronchoscopic and nonbronchoscopic methods. Pediatr. Crit. Care Med. 2010, 11, 258–266. [Google Scholar] [CrossRef]
- Chomton, M.; Brossier, D.; Sauthier, M.; Vallières, E.; Dubois, J.; Emeriaud, G.; Jouvet, P. Ventilator-associated pneumonia and events in pediatric intensive care: A single center study. Pediatr. Crit. Care Med. 2018, 19, 1106–1113. [Google Scholar] [CrossRef]
- Mackanjee, H.R.; Naidoo, L.; Ramkaran, P.; Sartorius, B.; Chuturgoon, A.A. Neonatal bronchoscopy: Role in respiratory disease of the newborn-A 7 year experience. Pediatr. Pulmonol. 2019, 54, 415–420. [Google Scholar] [CrossRef]
All VAP Episodes (total n = 245) | Multidrug Resistant Pathogens Associated VAP (total n = 96) | VAP with Concurrent Bacteremia (Total n = 46) | |
---|---|---|---|
Gram-positive cocci | 46 (18.8) | 15 (15.6) | 5 (10.9) |
Methicillin resistant Staphylococcus aureus | 15 (6.5) | 15 (15.6) | 3 (6.5) |
Methicillin sensitive Staphylococcus aureus | 28 (11.4) | 0 (0) | 2 (4.3) |
Enterococcus spp. | 1 (0.4) | 0 (0) | 0 (0) |
Group B Streptococcus | 2 (0.8) | 0 (0) | 0 (0) |
Gram-negative bacilli | 120 (49.0) | 47 (49.0) | 30 (65.2) |
Pseudomonas aeruginosa | 21 (8.6) | 3 (3.2) | 6 (13.0) |
Escherichia coli | 15 (6.1) | 12 (12.6) | 5 (10.9) |
Klebsiella pneumonia | 20 (11.8) | 13 (13.7) | 7 (15.2) |
Klebsiella oxytoca | 3 (1.2) | 0 (0) | 0 (0) |
Klebsiella aerogenes | 6 (2.4) | 4 (4.2) | 2 (4.3) |
Enterobacter spp. | 19 (7.8) | 8 (8.4) | 2 (4.3) |
Serratia marcescens | 14 (5.7) | 0 (0) | 4 (8.7) |
Acinetobacter baumannii | 15 (6.1) | 1 (1.1) | 2 (4.3) |
Stenotrophomonas maltophilia | 6 (2.4) | 6 (6.3) | 2 (4.3) |
Polymicrobial microorganisms | 62 (25.3) | 31 (32.3) | 9 (18.5) |
Two Gram-positive cocci | 2 (0.8) | 0 (0) | 0 (0) |
Two Gram-negative bacilli | 22 (9.0) | 10 (10.4) | 3 (6.5) |
Combined Gram-positive and Gram-negative | 37 (15.1) | 20 (20.8) | 6 (13.0) |
≥3 microorganisms | 1 (0.4) | 1 (1.1) | 0 (0) |
Others * | 10 (4.1) | 3 (3.1) | 0 (0) |
Normal flora or no growth | 7 (2.9) | 0 (0) | 2 (4.3) |
Characteristics | All VAP Episodes (Total n = 245) | MDR Pathogen-Associated VAP Episodes (Total n = 96) | Non-MDR Pathogen-Associated VAP Episodes (Total n = 149) | p Values |
---|---|---|---|---|
Cases Demographics | ||||
Gestational age (weeks), median (IQR) | 26.0 (25.0-28.0) | 26.0 (25.0-28.8) | 26.0 (25.0-28.0) | 0.770 |
Birth weight (g), median (IQR) | 876.0 (725.0-1092.5) | 907.5 (746.0-1101.5) | 850 (700-1091.5) | 0.553 |
Gender (male/female), n (%) | 147 (60.0)/98 (40.0) | 59 (61.5)/37 (38.5) | 88 (59.0)/61 (41.0) | 0.790 |
5 minutes Apgar score ≤7, n (%) | 79 (32.2) | 32 (33.3) | 47 (31.5) | 0.771 |
Inborn/outborn, n (%) | 213 (86.9)/32 (13.1) | 82 (85.4)/14 (14.6) | 131 (87.9)/18 (12.1) | 0.567 |
Birth by NSD/Cesarean section, n (%) | 96 (39.2)/149 (60.8) | 45 (46.9)/51 (53.1) | 51 (34.2)/98 (65.8) | 0.060 |
Respiratory distress syndrome (≥Gr II), n (%) | 169 (69.0) | 59 (61.5) | 110 (73.8) | 0.048 |
Intraventricular hemorrhage (≥Stage III), n (%) | 19 (7.7) | 7 (7.3) | 12 (8.1) | 0.646 |
Underlying Chronic Comorbidities, n (%) | ||||
Neurological sequelae | 81 (33.1) | 33 (34.4) | 48 (32.2) | 0.781 |
Bronchopulmonary dysplasia | 164 (66.9) | 60 (62.5) | 104 (69.8) | 0.328 |
Cardiovascular diseases | 35 (14.3) | 13 (13.5) | 22 (14.8) | 0.854 |
Gastrointestinal sequelae | 70 (28.6) | 30 (31.3) | 40 (26.8) | 0.469 |
Renal disorders | 6 (2.4) | 4 (4.2) | 2 (1.3) | 0.158 |
Congenital anomalies | 21 (8.6) | 8 (8.3) | 13 (8.7) | 0.922 |
Presences of any chronic comorbidities | 203 (82.9) | 77 (80.2) | 126 (84.6) | 0.570 |
Presences of more than one comorbidities | 108 (44.1) | 43 (44.8) | 65 (43.6) | 0.741 |
Day of life at onset of VAP (day), median (IQR) | 29.0 (19.0–48.0) | 26.5 (15.5–50.8) | 30.0 (20.0–46.5) | 0.377 |
On antibiotic treatment at onset of VAP, n (%) | 88 (35.9) | 39 (40.6) | 49 (32.9) | 0.223 |
Use of TPN and/or intrafat, n (%) | 182 (74.3) | 73 (76.0) | 109 (73.2) | 0.655 |
Use of central venous catheter, n (%) | 225 (91.8) | 92 (95.8) | 133 (89.3) | 0.093 |
Clinical Features, n (%) | ||||
Fever | 14 (5.7) | 7 (7.3) | 7 (4.7) | 0.280 |
On HFOV/conventional ventilator | 89 (36.3)/156 (63.7) | 37 (38.5)/59 (61.5) | 59 (39.6)/97 (65.1) | 0.588 |
Septic shock | 39 (15.9) | 17 (17.7) | 22 (14.8) | 0.593 |
Metabolic acidosis | 39 (15.9) | 12 (12.5) | 27 (18.1) | 0.285 |
NTISS score at onset of VAP, median (IQR) | 27.0 (25.0-29.0) | 27.8 (26.0-29.8) | 27.0 (24.0-29.0) | 0.313 |
With concurrent bacteremia | 46 (18.8) | 23 (24.0) | 23 (15.4) | 0.131 |
Requirement of blood transfusion * | 180 (73.5) | 73 (76.0) | 107 (71.8) | 0.456 |
Requirement of high FiO2 (≥50%) # | 99 (40.4) | 45 (46.9) | 54 (36.2) | 0.110 |
Chest X-ray findings | 0.777 | |||
New infiltrate | 98 (40.0) | 40 (41.7) | 58 (38.9) | |
Worsening infiltrate | 134 (54.7) | 52 (54.2) | 82 (55.0) | |
Persistent infiltrate | 13 (5.3) | 4 (4.2) | 9 (6.0) |
Characteristics | All VAP Episodes (Total n = 245) | MDR Pathogens Associated VAP Episodes (Total n = 96) | Non-MDR Pathogens Associated VAP Episodes (Total n = 149) | p Values |
---|---|---|---|---|
Therapeutic Intervention, n (%) | ||||
Initial empiric antibiotics | ||||
Inappropriate initial antibiotics | 56 (22.9) | 49 (51.0) | 7 (4.7) | <0.001 |
Use of first line antibiotics | 50 (20.4) | 59 (61.5) | 88 (59.0) | 0.070 |
Use of broad-spectrum antibiotics | 195 (79.6) | 32 (33.3) | 47 (31.5) | 0.070 |
Modification of therapeutic antibiotics | 156 (63.7) | 74 (77.1) | 82 (55.0) | <0.001 |
Therapeutic antibiotics | ||||
Use of first line antibiotics | 74 (30.2) | 18 (18.8) | 56 (37.6) | 0.002 |
Use of broad-spectrum antibiotics | 171 (69.8) | 78 (81.3) | 93 (62.4) | 0.002 |
Duration of antibiotic treatment (day), mean ± SD | 10.5 ± 3.8 | 11.0 ± 3.9 | 9.9 ± 3.0 | 0.010 |
Therapeutic Outcomes, n (%) | ||||
Detailed clinical assessment, n (%) | 0.064 | |||
Clinical resolution | 96 (39.2) | 26 (27.1) | 70 (47.0) | <0.001 |
Delayed resolution | 75 (30.6) | 37 (38.5) | 38 (25.5) | 0.034 |
Relapse or recurrent infection | 21 (8.6) | 12 (12.5) | 9 (6.2) | |
Superinfection | 42 (17.1) | 17 (17.7) | 25 (16.8) | |
Death | 11 (4.5) | 4 (4.2) | 7 (4.7) | |
Detailed microbial assessment, n (%) | 0.256 | |||
Resolution | 114 (46.5) | 42 (43.8) | 73 (49.0) | |
Relapsed or recurrent infection | 36 (5.7) | 20 (20.8) | 16 (10.7) | |
Superinfection | 77 (31.4) | 28 (29.2) | 49 (32.9) | |
Clinical failure | 18 (15.9) | 6 (6.3) | 12 (8.1) | |
Overall clinical assessment, n (%) | 0.920 | |||
Cure | 206 (84.1) | 81 (84.4) | 125 (83.9) | |
Treatment failure * | 39 (15.9) | 15 (15.6) | 24 (16.1) |
Variables | Univariate Analysis | Multivariate Analysis | ||
---|---|---|---|---|
OR (95% CI) | p-Values | Adjusted OR (95% CI) | p-Values | |
Gestational Age | ||||
<26 weeks | 1.09 (0.39–3.23) | 0.875 | ||
26–28 weeks | 1.11 (0.36–3.40) | 0.849 | ||
29–33 weeks | 1 (reference) | |||
≥34 weeks | 1.67 (0.42–6.56) | 0.465 | ||
Septic shock | 4.05 (1.87–8.81) | <0.001 | 3.06 (1.07–8.72) | 0.037 |
On HFOV vs. conventional ventilator | 4.54 (2.19–9.41) | <0.001 | 4.10 (1.70–9.88) | 0.002 |
Inappropriate initial antibiotics | 0.70 (0.29–1.69) | 0.428 | ||
MDR pathogens associated VAP | 0.97 (0.48–1.95) | 0.920 | ||
Presences of neurological sequelae | 5.49 (2.64–11.44) | <0.001 | 3.35 (1.47–7.67) | 0.004 |
Bronchopulmonary dysplasia | 0.65 (0.32–1.32) | 0.234 | ||
Severity of Illness at Onset of VAP | ||||
Every 3 increase in NTISS scores | 1.65 (1.16–2.36) | 0.006 | 0.91 (0.55–1.50) | 0.716 |
Concurrent sepsis | 4.72 (2.24–9.93) | <0.001 | 4.83 (2.03–11.51) | <0.001 |
Thrombocytopenia | 2.79 (1.16–6.70) | 0.022 | 1.53 (0.54–4.35) | 0.430 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.-C.; Liao, C.-C.; Chu, S.-M.; Lai, M.-Y.; Huang, H.-R.; Chiang, M.-C.; Fu, R.-H.; Hsu, J.-F.; Tsai, M.-H. Impacts of Multidrug-Resistant Pathogens and Inappropriate Initial Antibiotic Therapy on the Outcomes of Neonates with Ventilator-Associated Pneumonia. Antibiotics 2020, 9, 760. https://doi.org/10.3390/antibiotics9110760
Wang H-C, Liao C-C, Chu S-M, Lai M-Y, Huang H-R, Chiang M-C, Fu R-H, Hsu J-F, Tsai M-H. Impacts of Multidrug-Resistant Pathogens and Inappropriate Initial Antibiotic Therapy on the Outcomes of Neonates with Ventilator-Associated Pneumonia. Antibiotics. 2020; 9(11):760. https://doi.org/10.3390/antibiotics9110760
Chicago/Turabian StyleWang, Hsiao-Chin, Chen-Chu Liao, Shih-Ming Chu, Mei-Yin Lai, Hsuan-Rong Huang, Ming-Chou Chiang, Ren-Huei Fu, Jen-Fu Hsu, and Ming-Horng Tsai. 2020. "Impacts of Multidrug-Resistant Pathogens and Inappropriate Initial Antibiotic Therapy on the Outcomes of Neonates with Ventilator-Associated Pneumonia" Antibiotics 9, no. 11: 760. https://doi.org/10.3390/antibiotics9110760
APA StyleWang, H. -C., Liao, C. -C., Chu, S. -M., Lai, M. -Y., Huang, H. -R., Chiang, M. -C., Fu, R. -H., Hsu, J. -F., & Tsai, M. -H. (2020). Impacts of Multidrug-Resistant Pathogens and Inappropriate Initial Antibiotic Therapy on the Outcomes of Neonates with Ventilator-Associated Pneumonia. Antibiotics, 9(11), 760. https://doi.org/10.3390/antibiotics9110760