Antimicrobial Susceptibility Testing in Pseudomonas aeruginosa Biofilms: One Step Closer to a Standardized Method
Abstract
:1. Introduction
2. Results and Discussion
2.1. Minimum Metabolic Inhibitory Concentrations of P. aeruginosa PAO1
2.2. Biofilm Model: Selection of Artificial Sputum Medium and Growth Conditions
2.3. Biofilm Antimicrobial Susceptibility of Clinical and Non-Clinical P. aeruginosa Strains
3. Materials and Methods
3.1. Biofilm Model Development
3.2. Biofilm Antimicrobial Susceptibility of Clinical and Non-Clinical P. aeruginosa Strains
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bjarnsholt, T.; Jensen, P.Ø.; Fiandaca, M.J.; Pedersen, J.; Hansen, C.R.; Andersen, C.B.; Pressler, T.; Givskov, M.; Høiby, N. Pseudomonas aeruginosa biofilms in the respiratory tract of cystic fibrosis patients. Pediatr. Pulmonol. 2009, 44, 547–558. [Google Scholar] [CrossRef]
- Poole, K. Pseudomonas aeruginosa: Resistance to the max. Front. Microbiol. 2011, 2, 65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ciofu, O.; Tolker-Nielsen, T. Tolerance and resistance of Pseudomonas aeruginosa biofilms to antimicrobial agents-how P. aeruginosa can escape antibiotics. Front. Microbiol. 2019, 10, 913. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Macià, M.D.; Rojo-Molinero, E.; Oliver, A. Antimicrobial susceptibility testing in biofilm-growing bacteria. Clin. Microbiol. Infect. 2014, 20, 981–990. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Magana, M.; Sereti, C.; Ioannidis, A.; Mitchell, C.A.; Ball, A.R.; Magiorkinis, E.; Chatzipanagiotou, S.; Hamblin, M.R.; Hadjifrangiskou, M.; Tegos, G.P. Options and limitations in clinical investigation of bacterial biofilms. Clin. Microbiol. Rev. 2018, 31, e00084-16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pratten, J.; Ready, D. Use of biofilm model systems to study antimicrobial susceptibility. Methods Mol. Biol. 2010, 642, 203–215. [Google Scholar] [CrossRef]
- Rudilla, H.; Merlos, A.; Sans-Serramitjana, E.; Fusté, E.; Sierra, J.M.; Zalacaín, A.; Vinuesa, T.; Viñas, M. New and old tools to evaluate new antimicrobial peptides. Aims Microbiol. 2018, 4, 522–540. [Google Scholar] [CrossRef]
- Kirchner, S.; Fothergill, J.L.; Wright, E.A.; James, C.E.; Mowat, E.; Winstanley, C. Use of artificial sputum medium to test antibiotic efficacy against Pseudomonas aeruginosa in conditions more relevant to the cystic fibrosis lung. J. Vis. Exp. 2012, e3857. [Google Scholar] [CrossRef] [Green Version]
- Palmer, K.L.; Aye, L.M.; Whiteley, M. Nutritional cues control Pseudomonas aeruginosa multicellular behavior in cystic fibrosis sputum. J. Bacteriol. 2007, 189, 8079–8087. [Google Scholar] [CrossRef] [Green Version]
- Turner, K.H.; Wessel, A.K.; Palmer, G.C.; Murray, J.L.; Whiteley, M. Essential genome of Pseudomonas aeruginosa in cystic fibrosis sputum. Proc. Natl. Acad. Sci. USA 2015, 112, 4110–4115. [Google Scholar] [CrossRef] [Green Version]
- Diaz Iglesias, Y.; Van Bambeke, F. Activity of antibiotics against Pseudomonas aeruginosa in an in vitro model of biofilms in the context of cystic fibrosis: Influence of the culture medium. Antimicrob. Agents Chemother. 2020, 64, e02204-19. [Google Scholar] [CrossRef] [PubMed]
- Høiby, N.; Bjarnsholt, T.; Moser, C.; Jensen, P.O.; Kolpen, M.; Qvist, T.; Aanaes, K.; Pressler, T.; Skov, M.; Ciofu, O. Diagnosis of biofilm infections in cystic fibrosis patients. APMIS 2017, 125, 339–343. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sriramulu, D.; Lünsdorf, H.; Lam, J.S.; Römling, U. Microcolony formation: A novel biofilm model of Pseudomonas aeruginosa for the cystic fibrosis lung. J. Med. Microbiol. 2005, 54, 667–676. [Google Scholar] [CrossRef] [PubMed]
- Hubble, V.B.; Hubbard, B.A.; Minrovic, B.M.; Melander, R.J.; Melander, C. Using small-molecule adjuvants to repurpose azithromycin for use against Pseudomonas aeruginosa. ACS Infect. Dis. 2019, 5, 141–151. [Google Scholar] [CrossRef]
- Bahari, S.; Zeighami, H.; Mirshahabi, H.; Roudashti, S.; Haghi, F. Inhibition of Pseudomonas aeruginosa quorum sensing by subinhibitory concentrations of curcumin with gentamicin and azithromycin. J. Glob. Antimicrob. Resist. 2017, 10, 21–28. [Google Scholar] [CrossRef]
- Diaz Iglesias, Y.; Wilms, T.; Vanbever, R.; Van Bambeke, F. Activity of antibiotics against Staphylococcus aureus in an in vitro model of biofilms in the context of cystic fibrosis: Influence of the culture medium. Antimicrob. Agents Chemother. 2019, 63, e00602-19. [Google Scholar] [CrossRef] [Green Version]
- Field, T.R.; White, A.; Elborn, J.S.; Tunney, M.M. Effect of oxygen limitation on the in vitro antimicrobial susceptibility of clinical isolates of Pseudomonas aeruginosa grown planktonically and as biofilms. Eur. J. Clin. Microbiol. Infect. Dis. 2005, 24, 677–687. [Google Scholar] [CrossRef]
- Hill, D.; Rose, B.; Pajkos, A.; Robinson, M.; Bye, P.; Bell, S.; Elkins, M.; Thompson, B.; Macleod, C.; Aaron, S.D.; et al. Antibiotic susceptabilities of Pseudomonas aeruginosa isolates derived from patients with cystic fibrosis under aerobic, anaerobic, and biofilm conditions. J. Clin. Microbiol. 2005, 43, 5085–5090. [Google Scholar] [CrossRef] [Green Version]
- Radlinski, L.; Conlon, B.P. Antibiotic efficacy in the complex infection environment. Curr. Opin. Microbiol. 2018, 42, 19–24. [Google Scholar] [CrossRef]
- Alvarez-Ortega, C.; Harwood, C.S. Responses of Pseudomonas aeruginosa to low oxygen indicate that growth in the cystic fibrosis lung is by aerobic respiration. Mol. Microbiol. 2007, 65, 153–165. [Google Scholar] [CrossRef] [Green Version]
- Allison, K.R.; Brynildsen, M.P.; Collins, J.J. Metabolite-enabled eradication of bacterial persisters by aminoglycosides. Nature 2011, 473, 216–220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borriello, G.; Werner, E.; Roe, F.; Ehrlich, G.D.; Stewart, P.S. Oxygen limitation contributes to antibiotic tolerance of Pseudomonas aeruginosa in biofilms. Antimicrob. Agents Chemother. 2004, 48, 2659–2664. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schaible, B.; Taylor, C.T.; Schaffer, K. Hypoxia increases antibiotic resistance in Pseudomonas aeruginosa through altering the composition of multidrug efflux pumps. Antimicrob. Agents Chemother. 2012, 56, 2114–2118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taylor, P.K.; Yeung, A.T.; Hancock, R.E. Antibiotic resistance in Pseudomonas aeruginosa biofilms: Towards the development of novel anti-biofilm therapies. J. Biotechnol. 2014, 191, 121–130. [Google Scholar] [CrossRef] [PubMed]
- Moskowitz, S.M.; Foster, J.M.; Emerson, J.; Burns, J.L. Clinically feasible biofilm susceptibility assay for isolates of Pseudomonas aeruginosa from patients with cystic fibrosis. J. Clin. Microbiol. 2004, 42, 1915–1922. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Torrens, G.; Cabot, G.; Ocampo-Sosa, A.A.; Conejo, M.C.; Zamorano, L.; Navarro, F.; Pascual, A.; Martínez-Martínez, L.; Oliver, A. Activity of Ceftazidime-Avibactam against clinical and isogenic laboratory Pseudomonas aeruginosa isolates expressing combinations of most relevant beta-lactam resistance mechanisms. Antimicrob. Agents Chemother. 2016, 60, 6407–6410. [Google Scholar] [CrossRef] [Green Version]
- Billings, N.; Millan, M.; Caldara, M.; Rusconi, R.; Tarasova, Y.; Stocker, R.; Ribbeck, K. The extracellular matrix component Psl provides fast-acting antibiotic defense in Pseudomonas aeruginosa biofilms. PLoS Pathog 2013, 9, e1003526. [Google Scholar] [CrossRef] [Green Version]
- Chiang, W.C.; Nilsson, M.; Jensen, P.Ø.; Høiby, N.; Nielsen, T.E.; Givskov, M. Extracellular DNA shields against aminoglycosides in Pseudomonas aeruginosa biofilms. Antimicrob. Agents Chemother. 2013, 57, 2352–2361. [Google Scholar] [CrossRef] [Green Version]
- Khan, W.; Bernier, S.P.; Kuchma, S.L.; Hammond, J.H.; Hasan, F.; O’Toole, G.A. Aminoglycoside resistance of Pseudomonas aeruginosa biofilms modulated by extracellular polysaccharide. Int. Microbiol. 2010, 13, 207–212. [Google Scholar] [CrossRef]
- Poudyal, B.; Sauer, K. The ABC of biofilm drug tolerance: The MerR-Like Regulator BrlR is an activator of ABC transport systems, with PA1874-77 contributing to the tolerance of Pseudomonas aeruginosa biofilms to tobramycin. Antimicrob. Agents Chemother. 2018, 62, e01981-17. [Google Scholar] [CrossRef]
- Stewart, P.S.; Franklin, M.J.; Williamson, K.S.; Folsom, J.P.; Boegli, L.; James, G.A. Contribution of stress responses to antibiotic tolerance in Pseudomonas aeruginosa biofilms. Antimicrob. Agents Chemother. 2015, 59, 3838–3847. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kolpen, M.; Lerche, C.J.; Kragh, K.N.; Sams, T.; Koren, K.; Jensen, A.S.; Line, L.; Bjarnsholt, T.; Ciofu, O.; Moser, C.; et al. Hyperbaric oxygen sensitizes anoxic Pseudomonas aeruginosa biofilm to ciprofloxacin. Antimicrob. Agents Chemother. 2017, 61, e01024-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing: Thirtieth Informational Supplement M100-S30; CLSI: Wayne, PA, USA, 2020. [Google Scholar]
- Peeters, E.; Nelis, H.J.; Coenye, T. Comparison of multiple methods for quantification of microbial biofilms grown in microtiter plates. J. Microbiol. Methods 2008, 72, 157–165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lozano, C.; Azcona-Gutiérrez, J.M.; Van Bambeke, F.; Sáenz, Y. Great phenotypic and genetic variation among successive chronic Pseudomonas aeruginosa from a cystic fibrosis patient. PLoS ONE 2018, 13, e0204167. [Google Scholar] [CrossRef] [PubMed]
Antimicrobial | P-MMIC (mg/L) | B-MMIC (mg/L) | |||
---|---|---|---|---|---|
Aerobiosis | Microaerobiosis | Aerobiosis | Microaerobiosis | ||
CAMHB/ASM/ SCFM/SCFM-2 | CAMHB/ASM/ SCFM/SCFM-2 | CAMHB/ASM/ SCFM/SCFM-2 | CAMHB/ASM/ SCFM/SCFM-2 | ||
Cefepime | 1/1/1/2 | 0.5/1/1/2 | 32/64/128/512 | >512/>512/512/>512 | |
Imipenem | 1/0.5/1/0.5 | 1/0.5/0.5/1 | 4/32/8/16 | >128/>128/>128/>128 | |
Azithromycin | 8/8/16/16 | 32/32/128/256 | 0.25/2/8/16 | 512/>512/>512/>512 | |
Gentamicin | 0.5/4/4/8 | 0.5/4/4/8 | 4/16/16/16 | >256/>256/>256/>256 | |
Tobramycin | <0.125/0.5/0.5/1 | 0.125/0.5/1/2 | 2/8/2/2 | >256/>256/>256/>256 | |
Ciprofloxacin | <0.25/<0.25/<0.25/0.25 | <0.25/<0.25/<0.25/0.5 | <0.25/0.5/2/4 | >512/>512/512/>512 |
Artificial Medium 1 | Time of Preparation | Time of Preservation | Cost |
---|---|---|---|
ASM | 2 days + at least 2 days of filtration | 1 month | ++ |
SCFM | 1 day | 2 months | + |
SCFM-2 | 3 days | 1 month | ++ |
Strain | MLST | P-MMIC (mg/L)/B-MMIC (mg/L) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Aerobiosis | Microaerobiosis | |||||||||||||
FEP | IPM | AZM | GEN | TOB | CIP | FEP | IPM | AZM | GEN | TOB | CIP | |||
PAO1 | ST549 | 1/128 | 1/8 | 16/8 | 4/16 | 0.5/2 | <0.25/2 | 1/512 | 0.5/>128 | 128/>512 | 4/>256 | 1/>256 | <0.25/512 | |
ATCC39324 | - | 2/>512 | 2/16 | 64/8 | 8/16 | 2/8 | <0.25/512 | 16/>512 | 2/>128 | 512/>512 | 16/>256 | 4/>256 | <0.25/>512 | |
Ps270 | ST412 | 8/>512 | 4/>128 | 256/>512 | 32/>256 | 1/>256 | 2/32 | 32/>512 | 32/>128 | >512/>512 | 64/>256 | 2/>256 | 4/>256 | |
Ps338 | 4/512 | 1/4 | 128/32 | 4/64 | 0.5/32 | 1/8 | 8/512 | 1/4 | 512/512 | 4/64 | 2/32 | 2/8 | ||
Ps178 | ST155 | 8/>512 | 2/32 | 32/8 | 16/16 | 2/2 | 2/64 | 8/>512 | 4/>128 | 512/>512 | 16/>256 | 2/>256 | 4/512 | |
Ps839 | 8/>512 | 1/16 | 128/64 | 32/32 | 4/4 | <0.25/8 | 8/>512 | 4/>128 | 512/>512 | 32/>256 | 4/>256 | 0.5/512 | ||
Ps845 | 4/>512 | 1/8 | 8/8 | 0.25/2 | 0.25/2 | <0.25/8 | 8/>512 | 4/>128 | 16/>512 | 1/>256 | 0.5/>256 | <0.25/256 | ||
W336 | ST235 | 64/>512 | 64/>128 | 32/16 | >256/>256 | 128/>256 | 64/512 | 128/>512 | 64/>128 | 512/>512 | >256/>256 | 256/>256 | 128/>512 | |
W342 | 16/>512 | 16/64 | 32/16 | >256/>256 | 4/64 | 64/512 | 16/>512 | 32/>128 | 512/>512 | >256/>256 | 8/128 | 64/>512 |
Strain | Biofilm Metabolic Activity (as % Compared to PAO1) ± SD 1 | |
---|---|---|
Aerobiosis | Microaerobiosis | |
ATCC39324 | 265 ± 3 | 138 ± 5 |
Ps270 | 375 ± 12 | 404 ± 8 |
Ps338 | 281 ± 9 | 175 ± 4 |
Ps178 | 730 ± 2 | 275 ± 16 |
Ps839 | 319 ± 9 | 448 ± 6 |
Ps845 | 247 ± 6 | 391 ± 3 |
W336 | 232 ± 18 | 241 ± 4 |
W342 | 164 ± 6 | 378 ± 6 |
Strain | Origin | MLST | Antimicrobial Susceptibility 1 | Biofilm (%) ± SD 2 | |
---|---|---|---|---|---|
Biomass (CV) 3 | Metabolic Activity (FDA) 4 | ||||
PAO1 | Control | ST549 | 100 ± 4 | 100 ± 8 | |
ATCC39324 | Control (Sputum CF patient) | - | 83 ± 12 | 13 ± 14 | |
Ps270 | Sputum CF patient | ST412 | IPM, MEM, DOR, FEP, CAZ, TZP, GEN, AMK, NET, LEV | 301 ± 20 | 222 ± 10 |
Ps338 | Sputum CF patient | ST412 | Susceptible | 92 ± 17 | 5 ± 18 |
Ps178 | Sputum | ST155 | Susceptible | 267 ± 2 | 454 ± 18 |
Ps839 | Food (swiss chard) | ST155 | IMP | 208 ± 34 | 694 ± 95 |
Ps845 | Food (swiss chard) | ST155 | Susceptible | 511 ± 119 | 802 ± 93 |
W336 | Bronchial aspirate | ST235 | IPM, MEM, DOR, FEP, CAZ, TZP, GEN, CIP | 49 ± 14 | 65 ± 10 |
W342 | Wound | ST235 | IPM, MEM, GEN, CIP | 55 ± 14 | 101 ± 12 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lozano, C.; López, M.; Rojo-Bezares, B.; Sáenz, Y. Antimicrobial Susceptibility Testing in Pseudomonas aeruginosa Biofilms: One Step Closer to a Standardized Method. Antibiotics 2020, 9, 880. https://doi.org/10.3390/antibiotics9120880
Lozano C, López M, Rojo-Bezares B, Sáenz Y. Antimicrobial Susceptibility Testing in Pseudomonas aeruginosa Biofilms: One Step Closer to a Standardized Method. Antibiotics. 2020; 9(12):880. https://doi.org/10.3390/antibiotics9120880
Chicago/Turabian StyleLozano, Carmen, María López, Beatriz Rojo-Bezares, and Yolanda Sáenz. 2020. "Antimicrobial Susceptibility Testing in Pseudomonas aeruginosa Biofilms: One Step Closer to a Standardized Method" Antibiotics 9, no. 12: 880. https://doi.org/10.3390/antibiotics9120880
APA StyleLozano, C., López, M., Rojo-Bezares, B., & Sáenz, Y. (2020). Antimicrobial Susceptibility Testing in Pseudomonas aeruginosa Biofilms: One Step Closer to a Standardized Method. Antibiotics, 9(12), 880. https://doi.org/10.3390/antibiotics9120880