Carbapenem-Sparing Strategies for ESBL Producers: When and How
Abstract
1. Introduction
2. Piperacillin–Tazobactam
3. Ceftolozane–Tazobactam
4. Ceftazidime–Avibactam
5. Cephamycins
6. Cefepime
7. Temocillin
8. Quinolones
9. Aminoglycosides
10. Tigecycline–Eravacycline–Omadacycline
11. Fosfomycin
12. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Doi, Y.; Iovleva, A.; Bonomo, R.A. The ecology of extended-spectrum β-lactamases (ESBLs) in the developed world. J. Travel Med. 2017, 2017, S44–S51. [Google Scholar] [CrossRef]
- European Center for Disease Prevention and Control (ECDC). Surveillance of Antimicrobial Resistance in Europe 2018; Annual Report of the European Antimicrobial Resistance Surveillance Network (EARS-Net); ECDC: Stockholm, Sweden, 2019; Available online: https://www.ecdc.europa.eu/en/publications-data/surveillance-antimicrobial-resistance-europe-2018 (accessed on 29 December 2019).
- Peirano, G.; Pitout, J.D.D. Extended-Spectrum β-Lactamase-Producing Enterobacteriaceae: Update on Molecular Epidemiology and Treatment Options. Drugs 2019, 2019, 1529–1541. [Google Scholar] [CrossRef]
- Maslikowska, J.A.; Walker, S.A.; Elligsen, M.; Mittmann, N.; Palmay, L.; Daneman, N.; Simor, A. Impact of infection with extended-spectrum β-lactamase-producing Escherichia coli or Klebsiella species on outcome and hospitalization costs. J. Hosp. Infect. 2016, 2016, 33–41. [Google Scholar] [CrossRef]
- Rodríguez-Baño, J.; Picón, E.; Gijón, P.; Hernández, J.R.; Ruíz, M.; Peña, C.; Almela, M.; Almirante, B.; Grill, F.; Colomina, J.; et al. Spanish Network for Research in Infectious Diseases (REIPI). Community-onset bacteremia due to extended-spectrum beta-lactamase-producing Escherichia coli: Risk factors and prognosis. Clin. Infect. Dis. 2010, 2010, 40–48. [Google Scholar] [CrossRef] [PubMed]
- Kang, C.I.; Wi, Y.M.; Lee, M.Y.; Ko, K.S.; Chung, D.R.; Peck, K.R.; Lee, N.Y.; Song, J.H. Epidemiology and risk factors of community onset infections caused by extended-spectrum β-lactamase-producing Escherichia coli strains. J. Clin. Microbiol. 2012, 2012, 312–317. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.A.; Kang, C.I.; Joo, E.J.; Ha, Y.E.; Kang, S.J.; Park, S.Y.; Chung, D.R.; Peck, K.R.; Ko, K.S.; Lee, N.Y.; et al. Epidemiology and clinical features of community-onset bacteremia caused by extended-spectrum β-lactamase-producing Klebsiella pneumoniae. Microb. Drug Resist. 2011, 2011, 267–273. [Google Scholar] [CrossRef] [PubMed]
- Chong, Y.; Shimoda, S.; Shimono, N. Current epidemiology, genetic evolution and clinical impact of extended-spectrum β-lactamase-producing Escherichia coli and Klebsiella pneumoniae. Infect. Genet. Evol. 2018, 2018, 185–188. [Google Scholar] [CrossRef] [PubMed]
- Vardakas, K.Z.; Tansarli, G.S.; Rafailidis, P.I.; Falagas, M.E. Carbapenems versus alternative antibiotics for the treatment of bacteraemia due to Enterobacteriaceae producing extended-spectrum β-lactamases: A systematic review and meta-analysis. J. Antimicrob. Chemother. 2012, 67, 2793–2803. [Google Scholar] [CrossRef]
- Rodríguez-Baño, J.; Navarro, M.D.; Retamar, P.; Picón, E.; Pascual, Á. Extended-Spectrum Beta-Lactamases–Red Española de Investigación en Patología Infecciosa/Grupo de Estudio de Infección Hospitalaria Group. β-Lactam/β-lactam inhibitor combinations for the treatment of bacteremia due to extended-spectrum β-lactamase-producing Escherichia coli: A post hoc analysis of prospective cohorts. Clin. Infect. Dis. 2012, 2012, 167–174. [Google Scholar] [CrossRef]
- Ofer-Friedman, H.; Shefler, C.; Sharma, S.; Tirosh, A.; Tal-Jasper, R.; Kandipalli, D.; Sharma, S.; Bathina, P.; Kaplansky, T.; Maskit, M.; et al. Carbapenems Versus Piperacillin-Tazobactam for Bloodstream Infections of Nonurinary Source Caused by Extended-Spectrum Beta-Lactamase-Producing Enterobacteriaceae. Infect. Control Hosp. Epidemiol. 2015, 2015, 981–985. [Google Scholar] [CrossRef]
- Harris, P.N.; Yin, M.; Jureen, R.; Chew, J.; Ali, J.; Paynter, S.; Paterson, D.L.; Tambyah, P.A. Comparable outcomes for β-lactam/β-lactamase inhibitor combinations and carbapenems in definitive treatment of bloodstream infections caused by cefotaxime-resistant Escherichia coli or Klebsiella pneumoniae. Antimicrob. Resist. Infect. Control 2015, 2015, 14. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez-Gutiérrez, B.; Pérez-Galera, S.; Salamanca, E.; de Cueto, M.; Calbo, E.; Almirante, B.; Viale, P.; Oliver, A.; Pintado, V.; Gasch, O.; et al. A Multinational, Preregistered Cohort Study of β-Lactam/β-Lactamase Inhibitor Combinations for Treatment of Bloodstream Infections Due to Extended-Spectrum-β-Lactamase-Producing Enterobacteriaceae. Antimicrob. Agents Chemother. 2016, 2016, 4159–4169. [Google Scholar] [CrossRef] [PubMed]
- Viale, P.; Giannella, M.; Bartoletti, M.; Tedeschi, S.; Lewis, R. Considerations About Antimicrobial Stewardship in Settings with Epidemic Extended-Spectrum β-Lactamase-Producing or Carbapenem-Resistant Enterobacteriaceae. Infect. Dis. Ther. 2015, 4, 65–83. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez-Gutiérrez, B.; Rodríguez-Baño, J. Current options for the treatment of infections due to extended-spectrum beta-lactamase-producing Enterobacteriaceae in different groups of patients. Clin. Microbiol. Infect. 2019, 2019, 932–942. [Google Scholar] [CrossRef]
- Rodríguez-Baño, J.; Gutiérrez-Gutiérrez, B.; Machuca, I.; Pascual, A. Treatment of Infections Caused by Extended-Spectrum-Beta-Lactamase-, AmpC-, and Carbapenemase-Producing Enterobacteriaceae. Clin. Microbiol. Rev. 2018, 31, e00079-17. [Google Scholar] [CrossRef]
- Aslan, A.T.; Akova, M. Extended spectrum β-lactamase producing enterobacteriaceae: Carbapenem sparing options. Expert Rev. Anti Infect. Ther. 2019, 2019, 969–981. [Google Scholar] [CrossRef]
- Tamma, P.D.; Rodriguez-Bano, J. The Use of Noncarbapenem β-Lactams for the Treatment of Extended-Spectrum β-Lactamase Infections. Clin. Infect. Dis. 2017, 2017, 972–980. [Google Scholar] [CrossRef]
- Kang, C.I.; Park, S.Y.; Chung, D.R.; Peck, K.R.; Song, J.H. Piperacillin-tazobactam as an initial empirical therapy of bacteremia caused by extended-spectrum β-lactamase-producing Escherichia coli and Klebsiella pneumoniae. J. Infect. 2012, 2012, 533–534. [Google Scholar] [CrossRef]
- Tamma, P.D.; Han, J.H.; Rock, C.; Harris, A.D.; Lautenbach, E.; Hsu, A.J.; Avdic, E.; Cosgrove, S.E.; Antibacterial Resistance Leadership Group. Carbapenem therapy is associated with improved survival compared with piperacillin-tazobactam for patients with extended-spectrum β-lactamase bacteremia. Clin. Infect. Dis. 2015, 2015, 1319–1325. [Google Scholar] [CrossRef]
- Ng, T.M.; Khong, W.X.; Harris, P.N.; De, P.P.; Chow, A.; Tambyah, P.A.; Lye, D.C. Empiric Piperacillin-Tazobactam versus Carbapenems in the Treatment of Bacteraemia Due to Extended-Spectrum Beta-Lactamase-Producing Enterobacteriaceae. PLoS ONE 2016, 2016, e0153696. [Google Scholar] [CrossRef]
- Gudiol, C.; Royo-Cebrecos, C.; Abdala, E.; Akova, M.; Álvarez, R.; Maestro-de la Calle, G.; Cano, A.; Cervera, C.; Clemente, W.T.; Martín-Dávila, P.; et al. BICAR Study Group. Efficacy of β-Lactam/β-Lactamase Inhibitor Combinations for the Treatment of Bloodstream Infection Due to Extended-Spectrum-β-Lactamase-Producing Enterobacteriaceae in Hematological Patients with Neutropenia. Antimicrob. Agents Chemother. 2017, 61, e00164-17. [Google Scholar] [CrossRef] [PubMed]
- Seo, Y.B.; Lee, J.; Kim, Y.K.; Lee, S.S.; Lee, J.A.; Kim, H.Y.; Uh, Y.; Kim, H.S.; Song, W. Randomized controlled trial of piperacillin-tazobactam, cefepime and ertapenem for the treatment of urinary tract infection caused by extended-spectrum beta-lactamase-producing Escherichia coli. BMC Infect. Dis. 2017, 2017, 404. [Google Scholar] [CrossRef] [PubMed]
- Yoon, Y.K.; Kim, J.H.; Sohn, J.W.; Yang, K.S.; Kim, M.J. Role of piperacillin/tazobactam as a carbapenem-sparing antibiotic for treatment of acute pyelonephritis due to extended-spectrum β-lactamase-producing Escherichia coli. Int. J. Antimicrob. Agents 2017, 2017, 410–415. [Google Scholar] [CrossRef] [PubMed]
- Ko, J.H.; Lee, N.R.; Joo, E.J.; Moon, S.Y.; Choi, J.K.; Park, D.A.; Peck, K. Appropriate non-carbapenems are not inferior to carbapenems as initial empirical therapy for bacteremia caused by extended-spectrum beta-lactamase-producing Enterobacteriaceae: A propensity score weighted multicenter cohort study. Eur. J. Clin. Microbiol. Infect. Dis. 2018, 37, 305–311. [Google Scholar] [CrossRef] [PubMed]
- Harris, P.N.A.; Tambyah, P.A.; Lye, D.C.; Mo, Y.; Lee, T.H.; Yilmaz, M.; Alenazi, T.H.; Arabi, Y.; Falcone, M.; Bassetti, M.; et al. MERINO Trial Investigators and the Australasian Society for Infectious Disease Clinical Research Network (ASID-CRN). JAMA 2018, 320, 984–994. [Google Scholar] [CrossRef]
- Benanti, G.E.; Brown, A.R.T.; Shigle, T.L.; Tarrand, J.J.; Bhatti, M.M.; McDaneld, P.M.; Shelburne, S.A.; Aitken, S.L. Carbapenem versus Cefepime or Piperacillin-Tazobactam for Empiric Treatment of Bacteremia Due to Extended-Spectrum-β-Lactamase-Producing Escherichia coli in Patients with Hematologic Malignancy. Antimicrob. Agents Chemother. 2019, 63, e01813-18. [Google Scholar] [CrossRef]
- John, R.; Colley, P.; Nguyen, H.L.; Berhe, M. Outcomes analysis in patients with extended-spectrum beta-lactamase bacteremia empirically treated with piperacillin/tazobactam versus carbapenems. Bayl. Univ. Med. Center Proc. 2019, 2019, 187–191. [Google Scholar] [CrossRef]
- Nasir, N.; Ahmed, S.; Razi, S.; Awan, S.; Mahmood, S.F. Risk factors for mortality of patients with ceftriaxone resistant E. coli bacteremia receiving carbapenem versus beta lactam/beta lactamase inhibitor therapy. BMC Res. Notes 2019, 2019, 611. [Google Scholar] [CrossRef]
- Sharara, S.L.; Amoah, J.; Pana, Z.D.; Simner, P.J.; Cosgrove, S.E.; Tamma, P.D. Is Piperacillin-Tazobactam Effective for the Treatment of Pyelonephritis Caused by ESBL-producing Organisms? Clin. Infect. Dis. 2019. [Google Scholar] [CrossRef]
- López-Cerero, L.; Picón, E.; Morillo, C.; Hernández, J.R.; Docobo, F.; Pachón, J.; Rodríguez-Baño, J.; Pascual, A. Comparative assessment of inoculum effects on the antimicrobial activity of amoxycillin-clavulanate and piperacillin-tazobactam with extended-spectrum beta-lactamase-producing and extended-spectrum beta-lactamase-non-producing Escherichia coli isolates. Clin. Microbiol. Infect. 2010, 2010, 132–136. [Google Scholar] [CrossRef]
- Son, S.K.; Lee, N.R.; Ko, J.H.; Choi, J.K.; Moon, S.Y.; Joo, E.J.; Peck, K.R.; Park, D.A. Clinical effectiveness of carbapenems versus alternative antibiotics for treating ESBL-producing Enterobacteriaceae bacteraemia: A systematic review and meta-analysis. J. Antimicrob. Chemother. 2018, 73, 2631–2642. [Google Scholar] [CrossRef] [PubMed]
- Sfeir, M.; Askin, G.; Christos, P. Beta-lactam/beta-lactamase inhibitors versus carbapenem for bloodstream infections due to extended-spectrum beta-lactamase-producing Enterobacteriaceae: Systematic review and meta-analysis. Int. J. Antimicrob. Agents 2018, 2018, 554–570. [Google Scholar] [CrossRef] [PubMed]
- Thomson, K.S.; Moland, E.S. Cefepime, piperacillin-tazobactam, and the inoculum effect in tests with extended-spectrum beta-lactamase-producing Enterobacteriaceae. Antimicrob. Agents Chemother. 2001, 2001, 3548–3554. [Google Scholar] [CrossRef] [PubMed]
- Hayden, M.K.; Won, S.Y. Carbapenem-Sparing Therapy for Extended-Spectrum β-Lactamase-Producing E coli and Klebsiella pneumoniae Bloodstream Infection: The Search Continues. JAMA 2018, 2018, 979–981. [Google Scholar] [CrossRef]
- Giacobbe, D.R.; Bassetti, M.; De Rosa, F.G.; Del Bono, V.; Grossi, P.A.; Menichetti, F.; Pea, F.; Rossolini, G.M.; Tumbarello, M.; Viale, P.; et al. ISGRI-SITA (Italian Study Group on Resistant Infections of the Società Italiana Terapia Antinfettiva). Ceftolozane/tazobactam: Place in therapy. Expert Rev. Anti Infect. Ther. 2018, 2018, 307–320. [Google Scholar] [CrossRef]
- Castanheira, M.; Doyle, T.B.; Mendes, R.E.; Sader, H.S. Comparative Activities of Ceftazidime-Avibactam and Ceftolozane-Tazobactam against Enterobacteriaceae Isolates Producing Extended-Spectrum β-Lactamases from U.S. Hospitals. Antimicrob. Agents Chemother. 2019, 63, e00160-19. [Google Scholar] [CrossRef]
- Solomkin, J.; Hershberger, E.; Miller, B.; Popejoy, M.; Friedland, I.; Steenbergen, J.; Yoon, M.; Collins, S.; Yuan, G.; Bare, P.S.; et al. Ceftolozane/Tazobactam Plus Metronidazole for Complicated Intra-abdominal Infections in an Era of Multidrug Resistance: Results From a Randomized, Double-Blind, Phase 3 Trial (ASPECT-cIAI). Clin. Infect. Dis. 2015, 60, 1462–1471. [Google Scholar] [CrossRef]
- Wagenlehner, F.M.; Umeh, O.; Steenbergen, J.; Yuan, G.; Darouiche, R.O. Ceftolozane-tazobactam compared with levofloxacin in the treatment of complicated urinary-tract infections, including pyelonephritis: A randomised, double-blind, phase 3 trial (ASPECT-cUTI). Lancet 2015, 385, 1949–1956. [Google Scholar] [CrossRef]
- Kollef, M.H.; Nováček, M.; Kivistik, Ü.; Réa-Neto, Á.; Shime, N.; Martin-Loeches, I.; Timsit, J.F.; Wunderink, R.G.; Bruno, C.J.; Huntington, J.A.; et al. Ceftolozane-tazobactam versus meropenem for treatment of nosocomial pneumonia (ASPECT-NP): A randomised, controlled, double-blind, phase 3, non-inferiority trial. Lancet Infect. Dis. 2019, 19, 1299–1311. [Google Scholar] [CrossRef]
- Popejoy, M.W.; Paterson, D.L.; Cloutier, D.; Huntington, J.A.; Miller, B.; Bliss, C.A.; Steenbergen, J.N.; Hershberger, E.; Umeh, O.; Kaye, K.S. Efficacy of ceftolozane/tazobactam against urinary tract andintra-abdominal infections caused by ESBL-producing Escherichia coli and Klebsiella pneumoniae: A pooled analysis of Phase 3 clinical trials. J. Antimicrob. Chemother. 2017, 72, 268–272. [Google Scholar] [CrossRef]
- Nguyen, C.P.; Dan Do, T.N.; Bruggemann, R.; Ten Oever, J.; Kolwijck, E.; Adang, E.M.M.; Wertheim, H.F.L. Clinical cure rate and cost-effectiveness of carbapenem-sparing beta-lactams vs. meropenem for Gram-negative infections: A systematic review, meta-analysis, and cost-effectiveness analysis. Int. J. Antimicrob. Agents 2019, 2019, 790–797. [Google Scholar] [CrossRef] [PubMed]
- Karaiskos, I.; Lagou, S.; Pontikis, K.; Rapti, V.; Poulakou, G. The “Old” and the “New” Antibiotics for MDR Gram-Negative Pathogens: For Whom, When, and How. Front. Public Health 2019, 2019, 151. [Google Scholar] [CrossRef] [PubMed]
- Karaiskos, I.; Galani, I.; Souli, M.; Giamarellou, H. Novel β-lactam-β-lactamase inhibitor combinations: Expectations for the treatment of carbapenem-resistant Gram-negative pathogens. Expert Opin. Drug Metab. Toxicol. 2019, 2019, 133–149. [Google Scholar] [CrossRef] [PubMed]
- Kazmierczak, K.M.; de Jonge, B.L.M.; Stone, G.G.; Sahm, D.F. In vitro activity of ceftazidime/avibactam against isolates of Pseudomonas aeruginosa collected in European countries: INFORM global surveillance 2012–2015. J. Antimicrob. Chemother. 2018, 2018, 2777–2781. [Google Scholar] [CrossRef]
- Mendes, R.; Castanheira, M.; Gasink, L.; Stone, G.G.; Nichols, W.W.; Flamm, R.K.; Jones, R.N. β-Lactamase Characterization of Gram-Negative Pathogens Recovered from Patients Enrolled in the Phase 2 Trials for Ceftazidime-Avibactam: Clinical Efficacies Analyzed against Subsets of Molecularly Characterized Isolates. Antimicrob. Agents Chemother. 2015, 2015, 1328–1335. [Google Scholar] [CrossRef][Green Version]
- Mendes, R.E.; Castanheira, M.; Woosley, L.N.; Stone, G.G.; Bradford, P.A.; Flamm, R.K. Molecular β-lactamase characterization of Gram-negative pathogens recovered from patients enrolled in the ceftazidime-avibactam phase 3 trials (RECAPTURE 1 and 2) for complicated urinary tract infections: Efficacies analysed against susceptible and resistant subsets. Int. J. Antimicrob. Agents 2018, 2018, 287–292. [Google Scholar] [CrossRef]
- Chastain, D.B.; White, B.P.; Cretella, D.A.; Bland, C.M. Is It Time to Rethink the Notion of Carbapenem-Sparing Therapy Against Extended-Spectrum β-Lactamase-Producing Enterobacteriaceae Bloodstream Infections? A Critical Review. Ann. Pharmacother. 2018, 2018, 484–492. [Google Scholar] [CrossRef]
- Lee, C.H.; Su, L.H.; Tang, Y.F.; Liu, J.W. Treatment of ESBL-producing Klebsiella pneumoniae bacteraemia with carbapenems or flomoxef: A retrospective study and laboratory analysis of the isolates. J. Antimicrob. Chemother. 2006, 2006, 1074–1077. [Google Scholar] [CrossRef]
- Yang, C.C.; Li, S.H.; Chuang, F.R.; Chen, C.H.; Lee, C.H.; Chen, J.B.; Wu, C.H.; Lee, C.T. Discrepancy between effects of carbapenems and flomoxef in treating nosocomial hemodialysis access-related bacteremia secondary to extended spectrum beta-lactamase producing Klebsiella pneumoniae in patients on maintenance hemodialysis. BMC Infect. Dis. 2012, 2012, 206. [Google Scholar] [CrossRef]
- Doi, A.; Shimada, T.; Harada, S.; Iwata, K.; Kamiya, T. The efficacy of cefmetazole against pyelonephritis caused by extended-spectrum beta-lactamase-producing Enterobacteriaceae. Int. J. Infect. Dis. 2013, 2013, e159–e163. [Google Scholar] [CrossRef]
- Pilmis, B.; Parize, P.; Zahar, J.R.; Lortholary, O. Alternatives to carbapenems for infections caused by ESBL-producing Enterobacteriaceae. Eur. J. Clin. Microbiol. Infect. Dis. 2014, 2014, 1263–1265. [Google Scholar] [CrossRef] [PubMed]
- Matsumura, Y.; Yamamoto, M.; Nagao, M.; Komori, T.; Fujita, N.; Hayashi, A.; Shimizu, T.; Watanabe, H.; Doi, S.; Tanaka, M.; et al. Multicenter retrospective study of cefmetazole and flomoxef for treatment of extended-spectrum-β-lactamase-producing Escherichia coli bacteremia. Antimicrob. Agents Chemother. 2015, 2015, 5107–5113. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.H.; Su, L.H.; Chen, F.J.; Tang, Y.F.; Li, C.C.; Chien, C.C.; Liu, J.W. Comparative effectiveness of flomoxef versus carbapenems in the treatment of bacteraemia due to extended-spectrum β-lactamase-producing Escherichia coli or Klebsiella pneumoniae with emphasis on minimum inhibitory concentration of flomoxef: A retrospective study. Int. J. Antimicrob. Agents 2015, 2015, 610–615. [Google Scholar] [CrossRef]
- Fukuchi, T.; Iwata, K.; Kobayashi, S.; Nakamura, T.; Ohji, G. Cefmetazole for bacteremia caused by ESBL-producing enterobacteriaceae comparing with carbapenems. BMC Infect. Dis. 2016, 2016, 427. [Google Scholar] [CrossRef]
- Senard, O.; Lafaurie, M.; Lesprit, P.; Nguyen, Y.; Lescure, X.; Therby, A.; Fihman, V.; Oubaya, N.; Lepeule, R. Efficacy of cefoxitin versus carbapenem in febrile male urinary tract infections caused by extended spectrum beta-lactamase-producing Escherichia coli: A multicenter retrospective cohort study with propensity score analysis. Eur. J. Clin. Microbiol. Infect. Dis. 2019. [CrossRef]
- Endimiani, A.; Perez, F.; Bonomo, R.A. Cefepime: A reappraisal in an era of increasing antimicrobial resistance. Expert Rev. Anti Infect. Ther. 2008, 6, 805–824. [Google Scholar] [CrossRef]
- Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Susceptibility Testing, 29th ed.; CLSI Supplement M100S; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2019. [Google Scholar]
- The European Committee on Antimicrobial Susceptibility Testing (EUCAST). Breakpoint Tables for Interpretation of MICs and Zone Diameters. Version 9.0. 2019. Available online: http://www.eucast.org (accessed on 29 December 2019).
- Bhat, S.V.; Peleg, A.Y.; Lodise, T.P., Jr.; Shutt, K.A.; Capitano, B.; Potoski, B.A.; Paterson, D.L. Failure of current cefepime breakpoints to predict clinical outcomes of bacteremia caused by gram-negative organisms. Antimicrob. Agents Chemother. 2007, 51, 4390–4395. [Google Scholar] [CrossRef]
- Thauvin-Eliopoulos, C.; Tripodi, M.; Moellering, R.C., Jr.; Eliopoulos, G.M. Efficacies of piperacillin-tazobactam and cefepime in rats with experimental intra-abdominal abscesses due to an extended-spectrum beta-lactamase-producing strain of Klebsiella pneumoniae. Antimicrob. Agents Chemother. 1997, 1997, 1053–1057. [Google Scholar] [CrossRef]
- Burgess, D.S.; Hall, R.G., 2nd. In vitro killing of parenteral beta-lactams against standard and high inocula of extended-spectrum beta-lactamase and non-ESBL producing Klebsiella pneumoniae. Diagn. Microbiol. Infect. Dis. 2004, 2004, 41–46. [Google Scholar] [CrossRef]
- Smith, K.P.; Kirby, J.E. The Inoculum Effect in the Era of Multidrug Resistance: Minor Differences in Inoculum Have Dramatic Effect on MIC Determination. Antimicrob. Agents Chemother. 2018, 62, e00433-18. [Google Scholar] [CrossRef]
- Zanetti, G.; Bally, F.; Greub, G.; Garbino, J.; Kinge, T.; Lew, D.; Romand, J.A.; Bille, J.; Aymon, D.; Stratchounski, L.; et al. Cefepime Study Group. Cefepime versus imipenem-cilastatin for treatment of nosocomial pneumonia in intensive care unit patients: A multicenter, evaluator-blind, prospective, randomized study. Antimicrob. Agents Chemother. 2003, 2003, 3442–3447. [Google Scholar] [CrossRef] [PubMed]
- Goethaert, K.; Van Looveren, M.; Lammens, C.; Jansens, H.; Baraniak, A.; Gniadkowski, M.; Van Herck, K.; Jorens, P.G.; Demey, H.E.; Ieven, M.; et al. High-dose cefepime as an alternative treatment for infections caused by TEM-24 ESBL-producing Enterobacter aerogenes in severely-ill patients. Clin. Microbiol. Infect. 2006, 2006, 56–62. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Chopra, T.; Marchaim, D.; Veltman, J.; Johnson, P.; Zhao, J.J.; Tansek, R.; Hatahet, D.; Chaudhry, K.; Pogue, J.M.; Rahbar, H.; et al. Impact of cefepime therapy on mortality among patients with bloodstream infections caused by extended-spectrum-β-lactamase-producing Klebsiella pneumoniae and Escherichia coli. Antimicrob. Agents Chemother. 2012, 2012, 3936–3942. [Google Scholar] [CrossRef] [PubMed]
- Lee, N.Y.; Lee, C.C.; Huang, W.H.; Tsui, K.C.; Hsueh, P.R.; Ko, W.C. Cefepime therapy for monomicrobial bacteremia caused by cefepime-susceptible extended-spectrum beta-lactamase-producing Enterobacteriaceae: MIC matters. Clin. Infect. Dis. 2013, 2013, 488–495. [Google Scholar] [CrossRef]
- Wang, R.; Cosgrove, S.E.; Tschudin-Sutter, S.; Han, J.H.; Turnbull, A.E.; Hsu, A.J.; Avdic, E.; Carroll, K.C.; Tamma, P.D. Cefepime Therapy for Cefepime-Susceptible Extended-Spectrum β-Lactamase-Producing Enterobacteriaceae Bacteremia. Open Forum Infect. Dis. 2016, 2016, ofw132. [Google Scholar] [CrossRef]
- Lee, N.Y.; Lee, C.C.; Li, C.W.; Li, M.C.; Chen, P.L.; Chang, C.M.; Ko, W.C. Cefepime Therapy for Monomicrobial Enterobacter cloacae Bacteremia: Unfavorable Outcomes in Patients Infected by Cefepime-Susceptible Dose-Dependent Isolates. Antimicrob. Agents Chemother. 2015, 2015, 7558–7563. [Google Scholar] [CrossRef]
- Suh, J.W.; Yang, K.S.; Kim, S.B.; Kim, J.H.; Sohn, J.W.; Kim, M.J.; Yoon, Y.K. The use of cefepime as a carbapenem-sparing antibiotic for treating uncomplicated acute pyelonephritis caused by extended-spectrum β-lactamase producing Escherichia coli. Infect. Dis. 2018, 2018, 241–244. [Google Scholar] [CrossRef]
- Kim, S.; Altshuler, J.; Paris, D.; Fedorenko, M. Cefepime versus carbapenems for the treatment of urinary tract infections caused by extended-spectrum β-lactamase-producing enterobacteriaceae. Int. J. Antimicrob. Agents 2018, 2018, 155–158. [Google Scholar] [CrossRef]
- Karaiskos, I.; Giamarellou, H. Multidrug-resistant and extensively drug-resistant Gram-negative pathogens: Current and emerging therapeutic approaches. Expert Opin. Pharmacother. 2014, 2014, 1351–1370. [Google Scholar] [CrossRef]
- Duployez, C.; Loïez, C.; Cattoen, C.; Wallet, F.; Vachée, A. In vitro activity of temocillin against extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae strains isolated from urinary tract infections in France. Med. Mal. Infect. 2019, 2019, 47–53. [Google Scholar] [CrossRef]
- Alexandre, K.; Réveillon-Istin, M.; Fabre, R.; Delbos, V.; Etienne, M.; Pestel-Caron, M.; Dahyot, S.; Caron, F. Temocillin against Enterobacteriaceae isolates from community-acquired urinary tract infections: Low rate of resistance and good accuracy of routine susceptibility testing methods. J. Antimicrob. Chemother. 2018, 2018, 1848–1853. [Google Scholar] [CrossRef] [PubMed]
- Balakrishnan, I.; Awad-El-Kariem, F.M.; Aali, A.; Kumari, P.; Mulla, R.; Tan, B.; Brudney, D.; Ladenheim, D.; Ghazy, A.; Khan, I.; et al. Temocillin use in England: Clinical and microbiological efficacies in infections caused by extended-spectrum and/or derepressed AmpC β-lactamase-producing Enterobacteriaceae. J. Antimicrob. Chemother. 2011, 2011, 2628–2631. [Google Scholar] [CrossRef] [PubMed]
- Laterre, P.F.; Wittebole, X.; Van de Velde, S.; Muller, A.E.; Mouton, J.W.; Carryn, S.; Tulkens, P.M.; Dugernier, T. Temocillin (6 g daily) in critically ill patients: Continuous infusion versus three times daily administration. J. Antimicrob. Chemother. 2015, 2015, 891–898. [Google Scholar] [CrossRef]
- Woerther, P.L.; Lepeule, R.; Burdet, C.; Decousser, J.W.; Ruppé, É.; Barbier, F. Carbapenems and alternative β-lactams for the treatment of infections due to extended-spectrum β-lactamase-producing Enterobacteriaceae: What impact on intestinal colonisation resistance? Int. J. Antimicrob. Agents 2018, 2018, 762–770. [Google Scholar] [CrossRef]
- Rodríguez-Martínez, J.M.; Machuca, J.; Cano, M.E.; Calvo, J.; Martínez-Martínez, L.; Pascual, A. Plasmid-mediated quinolone resistance: Two decades on. Drug Resist. Updat. 2016, 2016, 13–29. [Google Scholar] [CrossRef]
- Karlowsky, J.A.; Lagacé-Wiens, P.R.S.; Adam, H.J.; Baxter, M.R.; Laing, N.M.; Walkty, A.J.; Zhanel, G.G. In vitro susceptibility of urinary Escherichia coli isolates to first- and second-line empirically prescribed oral antimicrobials: Canward surveillance study results for Canadian outpatients, 2007–2016. Int. J. Antimicrob. Agents 2019, 2019, 62–68. [Google Scholar] [CrossRef]
- Albert, M.; Yagüe, G.; Fernández, M.; Viñuela, L.; Segovia, M.; Muñoz, J.L. Prevalence of plasmid-mediated quinolone resistance determinants in extended-spectrum β-lactamase-producing and -non-producing enterobacteria in Spain. Int. J. Antimicrob. Agents 2014, 43, 390–391. [Google Scholar] [CrossRef]
- Lo, C.L.; Lee, C.C.; Li, C.W.; Li, M.C.; Hsueh, P.R.; Lee, N.Y.; Ko, W.C. Fluoroquinolone therapy for bloodstream infections caused by extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae. Microbiol. Immunol. Infect. 2017, 2017, 355–361. [Google Scholar] [CrossRef]
- Endimiani, A.; Luzzaro, F.; Perilli, M.; Lombardi, G.; Colì, A.; Tamborini, A.; Amicosante, G.; Toniolo, A. Bacteremia due to Klebsiella pneumoniae isolates producing the TEM-52 extended-spectrum beta-lactamase: Treatment outcome of patients receiving imipenem or ciprofloxacin. Clin. Infect. Dis. 2004, 2004, 243–251. [Google Scholar] [CrossRef]
- Tumbarello, M.; Sanguinetti, M.; Montuori, E.; Trecarichi, E.M.; Posteraro, B.; Fiori, B.; Citton, R.; D’Inzeo, T.; Fadda, G.; Cauda, R.; et al. Predictors of mortality in patients with bloodstream infections caused by extended-spectrum-beta-lactamase-producing Enterobacteriaceae: Importance of inadequate initial antimicrobial treatment. Antimicrob. Agents Chemother. 2007, 2007, 1987–1994. [Google Scholar] [CrossRef]
- Meije, Y.; Pigrau, C.; Fernández-Hidalgo, N.; Clemente, M.; Ortega, L.; Sanz, X.; Loureiro-Amigo, J.; Sierra, M.; Ayestarán, A.; Morales-Cartagena, A.; et al. Non-intravenous carbapenem-sparing antibiotics for definitive treatment of bacteraemia due to Enterobacteriaceae producing extended-spectrum β-lactamase (ESBL) or AmpC β-lactamase: A propensity score study. Int. J. Antimicrob. Agents 2019, 54, 189–196. [Google Scholar] [CrossRef] [PubMed]
- U.S. Food and Drug Administration (FDA). FDA Updates Warnings for Fluoroquinolone Antibiotics on Risks of Mental Health and Low Blood Sugar Adverse Reactions. Available online: https://www.fda.gov/news-events/press-announcements/fda-updates-warnings-fluoroquinolone-antibiotics-risks-mental-health-and-low-blood-sugar-adverse (accessed on 29 December 2019).
- Sutherland, C.A.; Verastegui, J.E.; Nicolau, D.P. In vitro potency of amikacin and comparators against E. coli, K. pneumoniae and P. aeruginosa respiratory and blood isolates. Ann. Clin. Microbiol. Antimicrob. 2016, 15, 39. [Google Scholar] [CrossRef]
- Fernández-Martínez, M.; Ruiz Del Castillo, B.; Lecea-Cuello, M.J.; Rodríguez-Baño, J.; Pascual, Á.; Martínez-Martínez, L. Spanish Network for the Research in Infectious Diseases (REIPI) and the Spanish Group for Nosocomial Infections (GEIH). Prevalence of Aminoglycoside-Modifying Enzymes in Escherichia coli and Klebsiella pneumoniae Producing Extended Spectrum β-Lactamases Collected in Two Multicenter Studies in Spain. Microb. Drug Resist. 2018, 2018, 367–376. [Google Scholar] [CrossRef]
- Bouxom, H.; Fournier, D.; Bouiller, K.; Hocquet, D.; Bertrand, X. Which non-carbapenem antibiotics are active against extended-spectrum β-lactamase-producing Enterobacteriaceae? Int. J. Antimicrob. Agents 2018, 2018, 100–103. [Google Scholar] [CrossRef] [PubMed]
- Vidal, L.; Gafter-Gvili, A.; Borok, S.; Fraser, A.; Leibovici, L.; Paul, M. Efficacy and safety of aminoglycoside monotherapy: Systematic review and meta-analysis of randomized controlled trials. J. Antimicrob. Chemother. 2007, 2007, 247–257. [Google Scholar] [CrossRef]
- Palacios-Baena, Z.R.; Gutiérrez-Gutiérrez, B.; Calbo, E.; Almirante, B.; Viale, P.; Oliver, A.; Pintado, V.; Gasch, O.; Martínez-Martínez, L.; Pitout, J.; et al. Spanish Network for Research in Infectious Diseases (REIPI)/European Study Group of Bloodstream Infections and Sepsis (ESGBIS)/INCREMENT Group. Empiric Therapy with Carbapenem-Sparing Regimens for Bloodstream Infections due to Extended-Spectrum β-Lactamase-Producing Enterobacteriaceae: Results from the Increment Cohort. Clin. Infect. Dis. 2017, 2017, 1615–1623. [Google Scholar] [CrossRef]
- Palacios-Baena, Z.R.; Gutiérrez-Gutiérrez, B.; De Cueto, M.; Viale, P.; Venditti, M.; Hernández-Torres, A.; Oliver, A.; Martínez-Martínez, L.; Calbo, E.; Pintado, V.; et al. Reipi/Esgbis/Increment Group. Development and validation of the INCREMENT-ESBL predictive score for mortality in patients with bloodstream infections due to extended-spectrum-β-lactamase-producing Enterobacteriaceae. J. Antimicrob. Chemother. 2017, 2017, 906–913. [Google Scholar] [CrossRef]
- Zohar, I.; Schwartz, O.; Yossepowitch, O.; David, S.S.B.; Maor, Y. Aminoglycoside versus carbapenem or piperacillin/tazobactam treatment for bloodstream infections of urinary source caused by Gram-negative ESBL-producing Enterobacteriaceae. J. Antimicrob. Chemother. 2019. [Google Scholar] [CrossRef]
- Karaiskos, I.; Souli, M.; Giamarellou, H. Plazomicin: An investigational therapy for the treatment of urinary tract infections. Expert Opin. Investig. Drugs 2015, 2015, 1501–1511. [Google Scholar] [CrossRef]
- U.S. Food and Drug Administration (FDA). Drug Approval Package: Zemdri (Plazomicin). Available online: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2018/210303Orig1s000MedR.pdf (accessed on 29 December 2019).
- Rodloff, A.C.; Dowzicky, M.J. Chemotherapy. Antimicrobial Susceptibility among European Gram-Negative and Gram-Positive Isolates Collected as Part of the Tigecycline Evaluation and Surveillance Trial (2004–2014). Chemotherapy 2017, 2017, 1–11. [Google Scholar] [CrossRef]
- Giamarellou, H.; Poulakou, G. Pharmacokinetic and pharmacodynamic evaluation of tigecycline. Expert Opin. Drug Metab. Toxicol. 2011, 2011, 1459–1470. [Google Scholar] [CrossRef] [PubMed]
- Heizmann, W.R.; Löschmann, P.A.; Eckmann, C.; von Eiff, C.; Bodmann, K.F.; Petrik, C. Clinical efficacy of tigecycline used as monotherapy or in combination regimens for complicated infections with documented involvement of multiresistant bacteria. Infection 2015, 2015, 37–43. [Google Scholar] [CrossRef] [PubMed]
- Poulakou, G.; Kontopidou, F.V.; Paramythiotou, E.; Kompoti, M.; Katsiari, M.; Mainas, E.; Nicolaou, C.; Yphantis, D.; Antoniadou, A.; Trikka-Graphakos, E.; et al. Tigecycline in the treatment of infections from multi-drug resistant gram-negative pathogens. J. Infect. 2009, 2009, 273–284. [Google Scholar] [CrossRef] [PubMed]
- Tasina, E.; Haidich, A.B.; Kokkali, S.; Arvanitidou, M. Efficacy and safety of tigecycline for the treatment of infectious diseases: A meta-analysis. Lancet Infect. Dis. 2011, 2011, 834–844. [Google Scholar] [CrossRef]
- Shen, F.; Han, Q.; Xie, D.; Fang, M.; Zeng, H.; Deng, Y. Efficacy and safety of tigecycline for the treatment of severe infectious diseases: An updated meta-analysis of RCTs. Int. J. Infect. Dis. 2015, 2015, 25–33. [Google Scholar] [CrossRef]
- Routsi, C.; Kokkoris, S.; Douka, E.; Ekonomidou, F.; Karaiskos, I.; Giamarellou, H. High-dose tigecycline-associated alterations in coagulation parameters in critically ill patients with severe infections. Int. J. Antimicrob. Agents 2015, 2015, 90–93. [Google Scholar] [CrossRef]
- Huband, M.D.; Pfaller, M.A.; Shortridge, D.; Flamm, R.K. Surveillance of omadacycline activity tested against clinical isolates from the United States and Europe: Results from the SENTRY Antimicrobial Surveillance Programme, 2017. J. Glob. Antimicrob. Resist. 2019, 2019, 56–63. [Google Scholar] [CrossRef]
- Morrissey, I.; Olesky, M.; Hawser, S.; Lob, S.H.; Karlowsky, J.A.; Corey, G.R.; Bassetti, M.; Fyfe, C. In Vitro Activity of Eravacycline against Gram-Negative Bacilli Isolated in Clinical Laboratories Worldwide from 2013 to 2017. Antimicrob. Agents Chemother. 2019. [Google Scholar] [CrossRef]
- U.S. Food and Drug Administration (FDA). Drug Approval Package: XERAVA (Eravacycline). Available online: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2018/211109Orig1s000TOC.cfm (accessed on 29 December 2019).
- European Medicines Agency (EMA). XERAVA (Eravacycline). Available online: https://www.ema.europa.eu/en/medicines/human/EPAR/xerava (accessed on 29 December 2019).
- Solomkin, J.S.; Gardovskis, J.; Lawrence, K.; Montravers, P.; Sway, A.; Evans, D.; Tsai, L. IGNITE4: Results of a Phase 3, Randomized, Multicenter, Prospective Trial of Eravacycline vs Meropenem in the Treatment of Complicated Intraabdominal Infections. Clin. Infect. Dis. 2019, 2019, 921–929. [Google Scholar] [CrossRef]
- Falagas, M.E.; Kastoris, A.C.; Kapaskelis, A.M.; Karageorgopoulos, D.E. Fosfomycin for the treatment of multidrug-resistant, including extended-spectrum beta-lactamase producing, Enterobacteriaceae infections: A systematic review. Lancet Infect. Dis. 2010, 2010, 43–50. [Google Scholar] [CrossRef]
- Babiker, A.; Clarke, L.; Doi, Y.; Shields, R.K. Fosfomycin for treatment of multidrug-resistant pathogens causing urinary tract infection: A real-world perspective and review of the literature. Diagn. Microbiol. Infect. Dis. 2019, 2019, 114856. [Google Scholar] [CrossRef] [PubMed]
- Kaye, K.S.; Rice, L.B.; Dane, A.L.; Stus, V.; Sagan, O.; Fedosiuk, E.; Das, A.F.; Skarinsky, D.; Eckburg, P.B.; Ellis-Grosse, E.J. Fosfomycin for Injection (ZTI-01) Versus Piperacillin-tazobactam for the Treatment of Complicated Urinary Tract Infection Including Acute Pyelonephritis: ZEUS, A Phase 2/3 Randomized Trial. Clin. Infect. Dis. 2019, 2019, 2045–2056. [Google Scholar] [CrossRef] [PubMed]
- Rosso-Fernández, C.; Sojo-Dorado, J.; Barriga, A.; Lavín-Alconero, L.; Palacios, Z.; López-Hernández, I.; Merino, V.; Camean, M.; Pascual, A.; Rodríguez-Baño, J. Forest Study Group. Fosfomycin versus meropenem in bacteraemic urinary tract infections caused by extended-spectrum β-lactamase-producing Escherichia coli (FOREST): Study protocol for an investigator-driven randomised controlled trial. BMJ Open 2015, 2015, e007363. [Google Scholar] [CrossRef]
- Zhanel, G.G.; Walkty, A.J.; Karlowsky, J.A. Fosfomycin: A First-Line Oral Therapy for Acute Uncomplicated Cystitis. Can. J. Infect. Dis. Med. Microbiol. 2016, 2016, 2082693. [Google Scholar] [CrossRef] [PubMed]
- Karaiskos, I.; Galani, L.; Sakka, V.; Gkoufa, A.; Sopilidis, O.; Chalikopoulos, D.; Alivizatos, G.; Giamarellou, E. Oral fosfomycin for the treatment of chronic bacterial prostatitis. J. Antimicrob. Chemother. 2019, 2019, 1430–1437. [Google Scholar] [CrossRef]
Study | Country of Study (Period of Study) | Study Design | PTZ (n, Number of Participants) | Carbapenems (n, Number of Participants) | Organism(s) | Site of Infection | Severity of Illness at Infection Onset | Outcome (PTZ vs Carbapenems) | Comments |
---|---|---|---|---|---|---|---|---|---|
Rodríguez-Baño et al. a [10] | Spain (2001–2006) | Post hoc analysis of 6 prospective cohorts | Empiric: n = 35 Definitive: n = 18 | Empiric: n = 31 Definitive: n = 120 | Escherichia coli (100%) | BSI (100%) -urinary or biliary (70%) | ICU: 13% Severe sepsis or shock: 23% | 30-day mortality (empiric): 10% vs 19% (ns) 30-day mortality (definitive): 9% vs 17% (ns) | No association between either empirical or definitive therapy with PTZ and increased mortality |
Kang et al. [19] | Korea (2008–2010) | Retrospective | n = 36 | n = 78 | E. coli (68%) Klebsiella pneumoniae (32%) | BSI (100%) | NR | 30-day mortality: 22% vs 27% (ns) | No difference between PTZ and carbapenem treatment |
Tamma et al. [20] | USA (2007–2014) | Retrospective | n = 103 | n = 110 | K. pneumoniae (68%) E. coli (31%) Proteus mirabilis (1%) | BSI (100%) -CRBSI (46%) -UTI (21%) -cIAI (17%) -Biliary (9%) -pneumonia (9%) | ICU:34% Neutropenia: 15% | 14-day mortality: 17% vs 8% (p < 0.05) 30-day mortality: 26% vs 11% (p < 0.01) | PTZ inferior to carbapenems for the treatment of ESBL bacteremia. Risk of death 1.92 times higher for patients on empiric PTZ therapy |
Ofer-Friedman et al. [11] | Multicenter (USA, Israel) (2008–2012) | Retrospective | n = 10 | n = 69 | E. coli (53%) K. pneumoniae (28%) P. mirabilis (19%) | BSI (100%) -pneumonia (34%) -SSTI (28%) -Biliary (17%) -cIAI (9%) | Rapid fatal condition per McCabe score: 39% | 30-day mortality: 60% vs 34% (p = 0.10) 90-day mortality: 80% vs 48% (p = 0.05) | Therapy with PTZ was associated with increased 90-day mortality (adjusted OR, 7.9. p = 0.03) |
Harris et al. [12] | Singapore (2012–2013) | Retrospective | n = 24 | n = 23 | E. coli (86%) K. pneumoniae (14%) | BSI (100%) -UTI (47%) -Biliary (9%) | ICU: 15% | 30-day mortality: 8% vs 17% (ns) | No difference between PTZ and carbapenem treatment |
Gutiérrez-Gutiérrez et al. a [13] | INCREMENT international project (2004–2013) | Retrospective | Empiric: n = 123 Definitive: n = 60 | Empiric: n = 195 Definitive: n = 509 | E. coli (73%) K. pneumoniae (19%) | BSI (100%) -UTI (45%) -Biliary (12%) | ICU: 11% Severe sepsis or shock: 32% | 30-day mortality (empiric): 18% vs 20% (ns) 30-day mortality (definitive): 10% vs 14% (ns) | No association between either empirical or definitive therapy with PTZ and increased mortality |
Ng et al. [21] | Singapore (2011–2013) | Retrospective | n = 94 | n = 57 | E. coli (67%) K. pneumoniae (33%) | BSI (100%) -UTI (59%) -Biliary (9%) -Pneumonia (9%) -cIAI (5%) -CRBSI (4%) | ICU: 9% | 30-day mortality: 31% vs 30% (ns) | No difference between PTZ and carbapenem treatment |
Gudiol et al.a [22] | Multicenter (2006–2015) | Retrospective | Empiric: n = 44 Definitive: n = 12 | Empiric: n = 126 Definitive: n = 234 | E. coli (74%) K. pneumoniae (23%) K. oxytoca (1.5%) Enterobacter cloacae (1.5%) | BSI (100%) -Primary (53%) -CRBSI (18%) -cIAI (15%) -UTI (7%) | ICU: 18% Septic shock: 22% Hematological neutropenic patients: 100% | 30-day mortality (empiric): 21% vs 13% (ns) 30-day mortality (definitive): 6% vs 16% (ns) | PTZ appeared to have similar efficacy to carbapenems in hematological neutropenic patients |
Seo et al. [23] | Korea (2013–2015) | Randomized trial | n = 33 | n = 33 | E. coli (100%) | UTI (100%) BSI (11%) | Septic shock: 30% | 28-day mortality: 6.1% vs 6.1% (ns) | PTZ appeared to have similar efficacy to ertapenem in UTIs |
Yoon et al. [24] | Korea (2011–2013) | Retrospective | n = 68 | n = 82 | E. coli (100%) | UTI (100%) BSI (15%) | ICU: 25% Septic shock: 16% | In-hospital mortality: 4.4% vs 13% (ns) | PTZ appeared to have similar efficacy to ertapenem in UTIs |
Ko et al. a [25] | Korea (2010–2014) | Retrospective | n = 41 | n = 183 | E. coli (66%) K. pneumoniae (34%) | BSI (100%) -Primary (24%) -CRBSI (3%) -UTI (37%) -cIAI (28%) | ICU: 33% | 30-day mortality: 6.3% vs 11.4% (ns) | No difference between PTZ and carbapenem treatment |
Harris et al. [26] | International, multicenter (2014–2017) | Randomized trial | n = 188 | n = 191 | E. coli (87%) K. pneumoniae (13%) | BSI (100%) - UTI (61%) -cIAI (16%) -CRBSI (2%) -Pneumonia (3%) -Mucositis (5%) -SSTI (1%) | ICU: 7% Neutropenia: 7% | 30-day mortality: 12.3% vs 3.7% (p = 0.90) | Definitive treatment with PTZ compared with meropenem did not result in a non-inferior 30-day mortality |
Benanti et al. [27] | USA (2008–2015) | Retrospective | n = 21 | n = 42 | E. coli (100%) | BSI (100%) - cIAI (40%) -UTI (10%) -CRBSI (11%) -Pneumonia (11%) -SSTI (10%) | ICU: 30% Neutropenia: 89% | 14-day mortality: 0% vs 19% (p = 0.04) | Empiric treatment with PTZ not associated with increased mortality in patients with hematologic malignancy |
John et al. [28] | USA (2014–2017) | Retrospective | n = 66 | n = 51 | E. coli (86%) K. pneumoniae (14%) | BSI (100%) -UTI (73%) -cIAI (19%) -Pneumonia (1%) | ICU: 38% Septic shock:17% | In-hospital mortality: 3% vs 7.8% (ns) | PTZ appeared to have similar efficacy to carbapenems |
Nasir et al. a [29] | Pakistan (2015–2017) | Retrospective | n = 89 | n = 174 | E. coli (100%) | BSI (100%) -UTI (66%) -cIAI (23%) -CRBSI (3%) | ICU: 38% Septic shock:17% | In-hospital mortality: 13% vs 21% (ns) | PTZ appeared to have similar efficacy to carbapenems |
Sharara et al. [30] | USA (2014–2016) | Retrospective | n = 45 | n = 141 | E. coli (56%) K. pneumoniae (30%) P. mirabilis (10%) K. oxytoca (4%) | UTI (100%) | ICU: 26% | 30-day mortality: 4% vs 7% (ns) | PTZ appeared to have similar efficacy to carbapenems. Patients treated with carbapenem had higher incident of carbapenem-resistant organism isolated in 60 d (p = 0.09) |
Study | Country of Study (Period of Study) | Study Design | Cephamycin (n, Number of Participants) | Carbapenems (n, Number of Participants) | Organism(s) | Site of Infection | Severity of Illness at Infection Onset | Outcome (Cephamycins vs Carbapenems) | Comments |
---|---|---|---|---|---|---|---|---|---|
Lee et al. [49] | Taiwan (2004–2005) | Retrospective | n = 7 (flomoxef) | n = 20 | K. pneumoniae (100%) | BSI (100%) | ICU: 52% | 14-day mortality: 29% vs 25% (ns) | No difference between cephamycin and carbapenem treatment. Patients in the carbapenem group were more severely ill |
Yang et al. [50] | Taiwan (2001–2007) | Retrospective | n = 29 (flomoxef) | n = 28 | K. pneumoniae (100%) | BSI (100%) | ICU: 51% | 14-day mortality: 55% vs 39% (p < 0.05) | Hemodialysis access-related bacteremia included in the study. Cephamycin use was independently associated with increased mortality (OR, 3.52; 95% CI, 1.19–58.17) |
Doi et al. [51] | Japan (2008–2010) | Retrospective | n = 10 (cefmetazole) | n = 12 | E. coli (95%) K. pneumoniae (5%) | UTI (100%) | NR | Clinical cure (4-weeks): 90% vs 100% (ns) | No difference in clinical or bacteriological cure rate at 4 w |
Pilmis et al. [52] | France (2011) | Retrospective | n = 8 (cefoxitin) | n = 31 | E. coli (32%) K. pneumoniae (32%) E. cloacae (36%) | UTI (75%) BSI (25%) | NR | Clinical and microbiological relapse (30-days): 13% vs 23% (ns) | No difference between cephamycin and carbapenem treatment |
Matsumura et al. [53] | Japan (2005–2014) | Retrospective | Empiric, n = 8 Definitive, n = 59 (cefmetazole or flomoxef) | Empiric, n = 45 Definitive, n = 54 | E. coli (100%) | BSI (100%) | Septic shock: 41% | 30-day mortality (empiric arm): 8% vs 9% (ns) 30-day mortality (definitive arm): 5% vs 9% (ns) | No difference between cephamycin and carbapenem treatment |
Lee et al. [54] | Taiwan (2007–2012) | Retrospective | n = 123 (flomoxef) | n = 257 | K. pneumoniae (60%) E. coli (40%) | BSI (100%) | Pitt bacteremia score ≥4: 66% | 30-day mortality: 28.8% vs 12.8% | Definitive flomoxef therapy appears to be inferior to carbapenems, particularly for isolates with a MIC flomoxef of 2–8 mg/L |
Fukuchi et al. [55] | Japan (2008–2013) | Retrospective | n = 26 (cefmetazole) | n = 43 | E. coli (94%) K. pneumoniae (3%) K. oxytoca (3%) | BSI (100%) | ICU: 32% | 30-day mortality: 4% vs 16% (ns) | No difference between cephamycin and carbapenem treatment. The group that received carbapenem therapy had increased severity |
Senard et al. [56] | France (2013–2015) | Retrospective | n = 23 (cefoxitin) | n = 27 | E. coli (100%) | UTI (100%) | Septic shock: 4% | Clinical success: 73.9% vs 81.5% (ns) Clinical success: 57.9% vs 50% (ns) | No difference between cephamycin and carbapenem treatment. In the cephamycin group, continuous infusion was associated with clinical success |
Study | Country of Study (Period of Study) | Study design | Cefepime (n, Number of Participants) (Dosage) | Carbapenems (n, Number of Participants) (Dosage) | Organism(s) | Site of Infection | Severity of Illness at Infection Onset | Outcome (Cefepime vs Carbapenems) | Comments |
---|---|---|---|---|---|---|---|---|---|
Zanetti et al. [64] | Six European countries (1997–1999) | Randomized trial | n = 13 (2 gr q8h) | n = 10 (IMP 500 mg q6h) | K. pneumoniae (96%) E. aerogenes (4%) | Pneumonia (100%) | ICU (100%) | Clinical response: 69% vs 100% (p < 0.05) | Comparison for ESBL producers not included |
Goethaert et al. [65] | Belgium (1994–2000) | Retrospective | n = 21 (2 gr q8h) | n = 23 (IMP 500 mg q6h, MEM 1 gr q8h) | E. aerogenes (TEM-24) | Pneumonia (64%) BSI (16%) cIAI (14%) UTI (5%) Other (0.3%) | ICU (100%) | Clinical response: 62% vs 70% 30-day mortality: 33% vs 26% (ns) | No statistically significant differences in the outcome for the cefepime and carbapenem-treated groups |
Chopra et al. [66] | USA (2005–2007) | Retrospective | Empiric: monotherapy n = 43 Definitive: monotherapy n = 9 (NR) | Empiric: monotherapy n = 14 Definitive: monotherapy n = 33 (NR) | K. pneumoniae (83%) E. coli (17%) | BSI (100%) -CRBSI (75%) | ICU (41%) | In-hospital mortality Empiric: 40% vs 36% (ns) Definitive: 33% vs 36% (ns) | Trend toward increased mortality risk with empiric cefepime therapy |
Lee et al. [67] | Taiwan (2002–2007) | Retrospective | Empiric: n = 21 Definitive: n = 17 (1–2 g q8h) | Empiric: n = 91 Definitive: n = 161 (IMP 500 mg q6h, MEM 1 gr q8h, ETP 1 g q24h) | E. cloacae (55%) E. coli (24%) K. pneumoniae (21%) | BSI (100%) -Primary (14%) -CRBSI (21%) -Pneumonia (24%) -UTI (22%) -cIAI (16%) -SSTI (6%) | McCabe (Rapidly fatal): 11% Pitt score ≥ 4: 67% | 30-day mortality: Definitive therapy: 59% vs 17% (p = 0.01) Crude mortality: 65% vs 37% (p = 0.04) | Cefepime definitive therapy inferior to carbapenem therapy, 30-day mortality was lower when cefepime MIC≤ 1 mg/L |
Wang et al. [68] | USA (2006–2015) | Retrospective | n = 17 (1–2 g q8h) | n = 51 (IMP 500 mg q6h, MEM 1 gr q8h, ETP 1 g q24h) | Klebsiella spp. (63%) E. coli (32%) P. mirabilis (3%) | BSI (100%) -CRBSI (44%) -UTI (31%) -Biliary (9%) -Pneumonia (15%) -cIAI: (13%) -SSTI: (3%) | ICU (29%) | 14-day mortality: 41% vs 20% (p = 0.08) | Risk of death was 2.87 times higher for patients receiving cefepime compared with carbapenems |
Lee et al. [69] | Taiwan (2008–2012) | Retrospective | Definitive: n = 42 (1–2 g q12h or q8h) | Definitive: n = 53 (IMP 500 mg q6h, MEM 1 gr q8h, ETP 1g q24h) | E. cloacae (100%) | BSI (100%) -CRBSI (37%) -Primary (31%) -Pneumonia (9%) -UTI (8%) -cIAI: (8%) -SSTI: (6%) | McCabe (Rapidly fatal): 15% Pitt score ≥ 4: 39% | 30-day mortality: 26.4% vs 22.2% (ns) 30-day mortality (bacteremia due to ESBL): 100% vs 42.9% (p = 0.015) | Comparison for definitive therapy due to ESBL bacteremia with cefepime SDD isolates only reported |
Benanti et al. [27] | USA (2008–2015) | Retrospective | n = 40 (2 g q8h) | n = 42 (MEM 1 g q8h) | E. coli (100%) | BSI (100%) -CRBSI (19%) -Primary (16%) -Pneumonia (9%) -UTI (7%) -cIAI (43%) -SSTI (6%) | ICU: 26% Leukemia:79% Prior HCT: 50% | 14-day mortality: 8% vs 19% (ns) | No difference between cefepime and carbapenem therapy |
Seo et al. [23] | Korea | Randomized trial | n = 6 (2 g q12h) | n = 33 (ETP 1 g q24h) | E. coli (100%) | UTI (100%) | Charlson index: 5 Septic shock: 33% | Clinical and microbiological response: 33.3% vs 97% (p < 0.01) | Cefepime therapy inferior to carbapenem therapy |
Suh et al. [70] | Korea (2014–2016) | Retrospective | n = 54 (2 g q8h or q12h) | n = 101 (ETP 1 g q24h) | E. coli (100%) | UTI (100%) | Charlson index: 2 Septic shock: 6.5% | In-hospital mortality: 9.3% vs 9.9% (ns) | No difference between cefepime and carbapenem therapy |
Kim et al. [71] | USA (2014–2017) | Retrospective | n = 17 (1–2 g q12h or 2g q8h) | n = 89 (NR) | E. coli (82%) K. pneumoniae (18%) | UTI (100%) | ICU: 13% | Clinical and microbiological response: 100% vs 100% (ns) Relapse (30-day): 0% vs 7% | Comparable effectiveness between cefepime and carbapenems for UTIs |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karaiskos, I.; Giamarellou, H. Carbapenem-Sparing Strategies for ESBL Producers: When and How. Antibiotics 2020, 9, 61. https://doi.org/10.3390/antibiotics9020061
Karaiskos I, Giamarellou H. Carbapenem-Sparing Strategies for ESBL Producers: When and How. Antibiotics. 2020; 9(2):61. https://doi.org/10.3390/antibiotics9020061
Chicago/Turabian StyleKaraiskos, Ilias, and Helen Giamarellou. 2020. "Carbapenem-Sparing Strategies for ESBL Producers: When and How" Antibiotics 9, no. 2: 61. https://doi.org/10.3390/antibiotics9020061
APA StyleKaraiskos, I., & Giamarellou, H. (2020). Carbapenem-Sparing Strategies for ESBL Producers: When and How. Antibiotics, 9(2), 61. https://doi.org/10.3390/antibiotics9020061