Antibacterial Peptides
Conflicts of Interest
References
- Lattorff, H.M. Tissue specificity in social context-dependent lysozyme expression in bumblebees. Antibiotics 2020, 9, 130. [Google Scholar] [CrossRef] [Green Version]
- Boix-Lemonche, G.; Lekka, M.; Skerlavaj, B. A rapid fluorescence-based microplate assay to investigate the interaction of membrane active antimicrobial peptides with whole Gram-positive bacteria. Antibiotics 2020, 9, 92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flórez-Castillo, J.M.; Rondón-Villareal, P.; Ropero-Vega, J.L.; Mendoza-Espinel, S.Y.; Moreno-Amézquita, J.A.; Méndez-Jaimes, K.D.; Farfán-García, A.E.; Gómez-Rangel, S.Y.; Gómez-Duarte, O.G. Ib-M6 Antimicrobial peptide: Antibacterial activity against clinical isolates of Escherichia coli and molecular docking. Antibiotics 2020, 9, 79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Della Pelle, G.; Pera, G.; Belardinelli, M.C.; Gerdol, M.; Felli, M.; Crognale, S.; Scapigliati, G.; Ceccacci, F.; Buonocore, F.; Porcelli, F. Trematocine, a novel antimicrobial peptide from the antarctic fish Trematomus bernacchii: Identification and biological activity. Antibiotics 2020, 9, 66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paquette, S.J.; Reuter, T. Properties of an antimicrobial molecule produced by an Escherichia coli champion. Antibiotics 2020, 9, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shelenkov, A.; Slavokhotova, A.; Odintsova, T. Predicting antimicrobial and other cysteine-rich peptides in 1267 plant transcriptomes. Antibiotics 2020, 9, 60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liscano, Y.; Salamanca, C.H.; Vargas, L.; Cantor, S.; Laverde-Rojas, V.; Oñate-Garzón, J. Increases in hydrophilicity and charge on the polar face of Alyteserin 1c helix change its selectivity towards Gram-positive bacteria. Antibiotics 2019, 8, 238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Woodburn, K.W.; Jaynes, J.; Clemens, L.E. Designed antimicrobial peptides for topical treatment of antibiotic resistant Acne vulgaris. Antibiotics 2020, 9, 23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, Y.; Sun, F.; Li, S.; Gao, M.; Wang, L.; Sarhan, M.; Abdel-Rahman, M.A.; Li, W.; Kwok, H.F.; Wu, Y.; et al. Inhibitory activity of a scorpion defensin BmKDfsin3 against Hepatitis C virus. Antibiotics 2020, 9, 33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gray, D.A.; Wenzel, M. More than a pore: A current perspective on the in vivo mode of action of the lipopeptide antibiotic Daptomycin. Antibiotics 2020, 9, 17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sabatier, J.-M. Antibacterial Peptides. Antibiotics 2020, 9, 142. https://doi.org/10.3390/antibiotics9040142
Sabatier J-M. Antibacterial Peptides. Antibiotics. 2020; 9(4):142. https://doi.org/10.3390/antibiotics9040142
Chicago/Turabian StyleSabatier, Jean-Marc. 2020. "Antibacterial Peptides" Antibiotics 9, no. 4: 142. https://doi.org/10.3390/antibiotics9040142
APA StyleSabatier, J.-M. (2020). Antibacterial Peptides. Antibiotics, 9(4), 142. https://doi.org/10.3390/antibiotics9040142