Trends, Epidemiology, and Management of Multi-Drug Resistant Gram-Negative Bacterial Infections in the Hospitalized Setting
Abstract
:1. Introduction
2. Risk Factors for Resistance
3. Empiric Treatment Guidelines
3.1. Hospital Acquired Pneumonia and Ventilator Associated Pneumonia
3.2. Blood Stream Infections
3.3. Intra-Abdominal Infections
3.4. Urinary Tract Infections
3.5. Therapeutic Approaches to Gram-Negative Infections
3.6. The Resurgence of Old Antibiotics
3.6.1. Colistin
3.6.2. Fosfomycin
3.6.3. New Antibiotics
3.6.4. Plazomicin
3.6.5. Tigecycline
3.6.6. Ceftolozane-Tazobactam
3.6.7. Aztreonam
3.6.8. Ceftazidime-Avibactam
3.6.9. Imipenem-Colistatin Plus Relebactam
3.6.10. Cefiderocol
3.6.11. Eravacycline
3.6.12. Meropenem-Vaborbactam
3.7. Other Therapeutic Approaches
3.8. Antibiotic Stewardship
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Centers for Disease Control and Prevention. The Biggest Antibiotic-Resistant Threats in the U.S. 2013. Available online: https://www.cdc.gov/drugresistance/biggest_threats.html (accessed on 8 March 2019).
- Centers for Disease Control and Prevention. The Biggest Antibiotic-Resistant Threats in the U.S. 2019. Available online: https://www.cdc.gov/drugresistance/biggest-threats.html (accessed on 15 November 2019).
- Kaye, K.; Pogue, J. Infections Caused by Resistant Gram-Negative Bacteria: Epidemiology and Management. Pharm. J. Hum. Pharmacol. Drug Ther. 2015, 35, 949–962. [Google Scholar] [CrossRef] [PubMed]
- Munita, J.M.; Cesar, A.A. Mechanisms of Antibiotic Resistance. Virulence Mech. Bact. Pathog. 2016, 481–511. [Google Scholar] [CrossRef] [Green Version]
- Cerceo, E.; Deitelzweig, S.; Sherman, B.; Amin, A. Multidrug-Resistant Gram-Negative Bacterial Infections in the Hospital Setting: Overview, Implications for Clinical Practice, and Emerging Treatment Options. Microb. Drug Resist. 2016, 22, 412–431. [Google Scholar] [CrossRef] [PubMed]
- Tselebonis, A.; Nena, E. Monitoring of Frequency and Antimicrobial Susceptibility of Pathogens on the Hands of Healthcare Workers in a Tertiary Hospital. Folia Med. 2016, 58, 200–205. [Google Scholar] [CrossRef] [Green Version]
- MacVane, S. Antimicrobial Resistance in the Intensive Care Unit. J. Intensive Care Med. 2016, 32, 25–37. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.R.; Lee, C.E. Biology of Acinetobacter baumannii: Pathogenesis, Antibiotic Resistance Mechanisms, and Prospective Treatment Options. Front. Cell Infect. Microbiol. 2017, 7, 55. [Google Scholar] [CrossRef] [Green Version]
- Burillo, A.; Munoz, P.; Bouza, E. Risk stratification for multidrug-resistant Gram-negative infections in ICU patients. Curr. Opin. Infect. Dis. 2019, 32, 626–637. [Google Scholar] [CrossRef]
- Dantas, L.F. Predicting Acquisition of Carbapenem-Resistant Gram-Negative Pathogens in Intensive Care Units. J. Hosp. Infect. 2019, 103, 121–127. [Google Scholar] [CrossRef]
- Osthoff, M.; McGuinness, S. Urinary tract infections due to extended-spectrum beta-lactam- producing Gram- negative bacteria: Identification of risk factors and outcome predictors in an Australian tertiary referral hospital. Int. J. Infect. Dis. 2015, 34, 79–83. [Google Scholar] [CrossRef] [Green Version]
- Razazi, K.; Derde, L. Clinical impact and risk factors for colonization with extended-spectrum b-lactamase producing bacteria in the intensive care unit. Intensive Care Med. 2012, 38, 1769–1778. [Google Scholar] [CrossRef]
- Leal, H.F.; Azevedo, J.; Silva, G.E.O. Bloodstream infections caused by multidrug-resistant gram-negative bacteria: Epidemiological, clinical and microbiological features. BMC Infect. Dis. 2019, 19, 609. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, M.; Larson, E.L. Risk of drug resistance in repeat gram-negative infections among patients with multiple hospitalizations. J. Crit. Care 2018, 43, 260–264. [Google Scholar] [CrossRef] [Green Version]
- Raman, G.; Avendano, E.; Berger, S.; Menon, V. Appropriate initial antibiotic therapy in hospitalized patients with gram-negative infections: Systematic review and meta-analysis. BMC Infect. Dis. 2015, 15, 395. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Webb, B.J. Predicting Risk of Drug-Resistant Organisms in Pneumonia: Moving beyond the HCAP Model. Respir. Med. 2015, 109, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kalil, A.C.; Metersky, M.L.; Klompas, M. Management of Adults with Hospital-acquired and Ventilator-associated Pneumonia: 2016 Clinical Practice Guidelines by the Infectious Diseases Society of America and the American. Thoracic. Soc. Clin. Infect. Dis. 2016, 63, 575–582. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control. Guidelines for the Prevention of Intravascular Catheter-Related Infections. 2011. Available online: https://www.cdc.gov/infectioncontrol/guidelines/bsi/index.html (accessed on 6 June 2019).
- Naomi, P.; O’Grady, N.; Alexander, M. The Healthcare Infection Control Practices Advisory Committee (HICPAC) (Appendix 1), Guidelines for the Prevention of Intravascular Catheter-related Infections. Clin. Infect. Dis. 2011, 52, e162–e193. [Google Scholar]
- Gulen, T.A. Clinical Importance and Cost of Bacteremia Caused by Nosocomial Multi Drug Resistant Acinetobacter Baumannii. Int. J. Infect. Dis. 2015, 38, 32–35. [Google Scholar] [CrossRef] [Green Version]
- Justo, J.A.; Bookstaver, P.B. Combination therapy vs. monotherapy for Gram-negative bloodstream infection: Matching by predicted prognosis. Int. J. Antimicrob. Agents 2018, 51, 488–492. [Google Scholar] [CrossRef]
- Leone, S.; Damiani, G.; Pezone, I. New Antimicrobial Options for the Management of Complicated Intraabdominal Infections. Eur. J. Clin. Microbiol. Infect. Dis. 2019, 38, 819. [Google Scholar] [CrossRef]
- Herzog, T.; Chromik, A.M.; Uhl, W. Treatment of complicated intra-abdominal infections in the era of multi-drug resistant bacteria. Eur. J. Med. Res. 2010, 15, 525–532. [Google Scholar] [CrossRef] [Green Version]
- Solomkin, J.S.; Mazuski, J.E. Diagnosis and Management of Complicated Intra-abdominal Infection in Adults and Children: Guidelines by the Surgical Infection Society and the Infectious Diseases Society of America. Clin. Infect. Dis. 2010, 50, 133–164. [Google Scholar] [CrossRef] [Green Version]
- Bader, M.S.; Loeb, M.; Brooks, A.A. An update on the management of urinary tract infections in the era of antimicrobial resistance. Postgrad. Med. 2017, 129, 242–258. [Google Scholar] [CrossRef] [PubMed]
- Bent, S.; Nallamothu, B.K.; Simel, D.L.; Fihn, S.D.; Saint, S. Does This Woman Have an Acute Uncomplicated Urinary Tract Infection? JAMA 2002, 287, 2701–2710. [Google Scholar] [CrossRef] [PubMed]
- Gupta, K.; Hooton, T.M. International Clinical Practice Guidelines for the Treatment of Acute Uncomplicated Cystitis and Pyelonephritis in Women: A 2010 Update by the Infectious Diseases Society of America and the European Society for Microbiology and Infectious Diseases. Clin. Infect. Dis. 2011, 52, e103–e120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hooton, T.M.; Bradley, S.F. Diagnosis, Prevention, and Treatment of Catheter-Associated Urinary Tract Infection in Adults: 2009 International Clinical Practice Guidelines from the Infectious Diseases Society of America. Clin. Infect. Dis. 2010, 50, 625–663. [Google Scholar] [CrossRef] [PubMed]
- United States Task Force for Combating Antibiotic-Resistant Bacteria [online] National Action Plan for Combating Antibiotic-Resistant Bacteria. Available online: https://aspe.hhs.gov/system/files/pdf/258516/ProgressYears1and2CARBNationalActionPlan.pdf (accessed on 28 September 2019).
- Karaiskos, I. Multidrug-resistant and extensively drug-resistant Gram-negative pathogens: Current and emerging therapeutic approaches. Expert Opin. Pharmacother. 2014, 15, 1351–1370. [Google Scholar] [CrossRef]
- Mohamed, Y.F.; Abou-Shleib, H.M. Membrane permeabilization of colistin toward pan-drug resistant Gram-negative isolates. Braz. J. Microbiol. 2016, 47, 381–388. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Cao, Y.; Yi, L.; Liu, J.; Yang, Q. Emergent Polymyxin Resistance: End of an Era? Open Forum Infect. Dis. 2019, 6, ofz368. [Google Scholar] [CrossRef]
- Temocin, F.; Erdinc, F.S.; Tulek, N. Synergistic effects of sulbactam in multi-drug-resistant Acinetobacter baumannii. Braz. J. Microbiol. 2015, 46, 1119–1124. [Google Scholar] [CrossRef]
- Karaiskos, I.; Lagou, S. The “Old” and the “New” Antibiotics for MDR Gram-Negative Pathogens: For Whom, When, and How. Front. Public Health 2019, 7, 151. [Google Scholar] [CrossRef] [Green Version]
- Rhodes, N.J.; Crudes, C.E. Resistance Trends and Treatment Options in Gram-Negative Ventilator-Associated Pneumonia. Curr. Infect. Dis. Rep. 2018, 20, 3. [Google Scholar] [CrossRef] [PubMed]
- Wagenlehner, F.; Cloutier, D. Once- Daily Plazomicin for Complicated Urinary Tract Infections. N. Engl. J. Med. 2019, 380, 729–740. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Salguero, C.; Rodríguez-Avial, I.; Picazo, J.J.; Culebras, E. Can Plazomicin Alone or in Combination Be a Therapeutic Option against Carbapenem-Resistant Acinetobacter baumannii? Antimicrob. Agents Chemother. 2015, 59, 5959–5966. [Google Scholar] [CrossRef] [Green Version]
- Trebosc, V.; Gartenmann, S.; Royet, K. A Novel Genome-Editing Platform for Drug-Resistant Acinetobacter baumannii Reveals an AdeR-Unrelated Tigecycline Resistance Mechanism. Antimicrob. Agents Chemother. 2016, 60, 7263–7271. [Google Scholar] [CrossRef] [Green Version]
- Pfaller, M.A.; Bassetti, M. Ceftolozane/tazobactam activity against drug-resistant Enterobacteriaceae and Pseudomonas aeruginosa causing urinary tract and intraabdominal infections in Europe: Report from an antimicrobial surveillance programme (2012–15). J. Antimicrob. Chemother. 2017, 72, 1386–1395. [Google Scholar] [CrossRef]
- Kish, T. New Antibiotics in Development Target Highly Resistant Gram-Negative Organisms. Pharm. Ther. 2018, 43, 116–120. [Google Scholar]
- ClinicalTrials.gov. Available online: https://clinicaltrials.gov/ct2/show/NCT03329092 (accessed on 2 December 2019).
- ClinicalTrials.gov. Available online: https://clinicaltrials.gov/ct2/show/results/NCT02655419#wrappe (accessed on 2 December 2019).
- Emeraud, C.; Escaut, L. Aztreonam plus Clavulanate, Tazobactam, or Avibactam for Treatment of Infections Caused by Metallo-Beta-Lactamase- Producing Gram- Negative Bacteria. Antimicrob. Agents Chemother. 2019, 63, e00010-19. [Google Scholar] [CrossRef] [Green Version]
- Park, B. Aztreonam + Avibactam Combo Therapy Granted QIDP, Fast Track Status for Antibiotic-Resistant Infections. MPR. 2019. Available online: https://www.empr.com/home/news/drugs-in-the-pipeline/aztreonam-avibactam-combo-therapy-granted-qidp-fast-track-status-for-antibiotic-resistant-infections/ (accessed on 17 November 2019).
- Sader, H.S.; Castanheira, M.; Flamm, R.K. Antimicrobial Activity of Ceftazidime-Avibactam against Gram-Negative Bacteria Isolated from Patients Hospitalized with Pneumonia in U.S. Medical Centers, 2011 to 2015. Antimicrob. Agents Chemother. 2017, 61, e02083-16. [Google Scholar] [CrossRef] [Green Version]
- Torres, A.; Rank, D.; Melnick, D. Randomized Trial of Ceftazidime-Avibactam vs Meropenem for Treatment of Hospital-Acquired and Ventilator-Associated Bacterial Pneumonia (REPROVE): Analyses per US FDA-Specified End Points. Open Forum Infect. Dis. 2019, 6, ofz149. [Google Scholar] [CrossRef] [PubMed]
- Zhanel, G.G.; Lawrence, C.K.; Adam, H.; Schweizer, F.; Zelenitsky, S.; Zhanel, M.; Lagacé-Wiens, P.R.S.; Walkty, A.; Denisuik, A.; Golden, A.; et al. Imipenem-Relebactam and Meropenem-Vaborbactam: Two Novel Carbapenem-β-Lactamase Inhibitor Combinations. Drugs 2018, 78, 65–98. [Google Scholar] [CrossRef]
- Motsch, J.; de Oliveira, C.M. RESTORE-IMI 1: A Multicenter, Randomized, Double-blind Trial Comparing Efficacy and Safety of Imipenem/Relebactam vs Colistin Plus Imipenem in Patients With Imipenem-nonsusceptible Bacterial Infections. Clin. Infect. Dis. 2020, 70, 1799–1808. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Negash, K.H.; Norris, J.K.S.; Hodgkinson, J.T. Siderophore-Antibiotic Conjugate Design: New Drugs for Bad Bugs? Molecules 2019, 24, 3314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cun-Bao, L.I.U.; Bin, S.H.A.N.; Hong-Mei, B.A.I.; Jing, T.A.N.G.; Long-Zong, Y.A.N.; Yan-Bing, M.A. Hydrophilic/hydrophobic characters of antimicrobial peptides derived from animals and their effects on multidrug resistant clinical isolates. Zool. Res. 2015, 36, 41. [Google Scholar]
- Qi, J.; Gao, R.; Liu, C. Potential role of the antimicrobial peptide Tachyplesin III against multidrug-resistant P. aeruginosa and A. baumannii coinfection in an animal model. Infect. Drug Resist. 2019, 12, 2865–2874. [Google Scholar] [CrossRef] [Green Version]
- Domingo-Calap, P.; Delgado-Martínez, J. Bacteriophages: Protagonists of a Post-Antibiotic Era. Antibiotics 2018, 7, 66. [Google Scholar] [CrossRef] [Green Version]
- Mulani, M.S.; Kamble, E.E. Emerging Strategies to Combat ESKAPE Pathogens in the Era of Antimicrobial Resistance: A Review. Front. Microbiol. 2019, 10, 539. [Google Scholar] [CrossRef]
- Shivani, S.; Poladi, K. Nanosponges-Novel Emerging Drug Delivery System: A Review. Int. J. Pharm. Sci. Res. 2015, 6, 529–540. [Google Scholar]
- Vadlamani, A.; Detwiler, D.A. Synergistic bacterial inactivation by combining antibiotics with nanosecond electric pulses. Appl. Microbiol. Biotechnol. 2018, 102, 7589–7596. [Google Scholar] [CrossRef]
- Rhodes, N.L.; De la Presa, M. Violet 405 nm light: A novel therapeutic agent against β-lactam-resistant Escherichia coli. Lasers Surg. Med. 2016, 48, 311–317. [Google Scholar] [CrossRef]
- Tomb, R.M.; White, T.A. Review of the Comparative Susceptibility of Microbial Species to Photoinactivation Using 380-480 nm Violet-Blue Light. Photochem. Photobiol. 2018, 94, 445–458. [Google Scholar] [CrossRef] [Green Version]
- Mohamed, M.; Raeesi, V. A versatile plasmonic thermogel for disinfection of antimicrobial resistant bacteria. Biomaterials 2016, 97, 154–163. [Google Scholar] [CrossRef] [PubMed]
- Dellit, T.H.; Owens, R.C. Infectious Diseases Society of America and the Society for Healthcare Epidemiology of America Guidelines for Developing an Institutional Program to Enhance Antimicrobial Stewardship. Clin. Infect. Dis. 2007, 44, 159–177. [Google Scholar] [CrossRef]
- Centers for Disease Control. Core Elements of Hospital Antimicrobial Stewardship Programs. Available online: https://www.cdc.gov/antibiotic-use/healthcare/pdfs/core-elements.pdf (accessed on 7 November 2019).
- Centers for Disease Control. Antibiotic Stewardship Statement for Antibiotic Guidelines. Available online: https://www.cdc.gov/hicpac/recommendations/antibiotic-stewardship-statement.html (accessed on 7 November 2019).
- Cook, P.P.; Gooch, M. Long-term effects of an antimicrobial stewardship programme at a tertiary-careteaching hospital. Int. J. Antimicrob. Agents 2015, 45, 262–267. [Google Scholar] [CrossRef] [PubMed]
- Perez, K.K.; Olsen, R.J.; Musick, W.L. Integrating rapid diagnostics and antimicrobial stewardship improves outcomes in patients with antibiotic-resistant Gram-negative bacteremia. J. Infect. 2014, 69, 216–225. [Google Scholar] [CrossRef] [PubMed]
- Wenzler, E.; Goff, D.A.; Mangino, J.E.; Reed, E.E.; Wehr, A.; Bauer, K.A. Impact of rapid identification of Acinetobacter Baumannii via matrix-assisted laser desorption ionization time-of-flight mass spectrometry combined with antimicrobial stewardship in patients with pneumonia and/or bacteremia. Diagn. Microbiol. Infect. Dis. 2016, 84, 63–68. [Google Scholar] [CrossRef] [PubMed]
- Martin, M.J.; Thottathil, S.E.; Newman, T.B. Antibiotics Overuse in Animal Agriculture: A Call to Action for Health Care Providers. Am. J. Public Health 2015, 105, 2409–2410. [Google Scholar] [CrossRef]
- Pérez-Rodríguez, F.; Mercanoglu Taban, B. A State-of-Art Review on Multi-Drug Resistant Pathogens in Foods of Animal Origin: Risk Factors and Mitigation Strategies. Front. Microbiol. 2019, 10, 2091. [Google Scholar] [CrossRef] [Green Version]
- Biochemical Society (Great Britain). Antibiotic Resistance in Grass and Soil. Biochem. Soc. Trans. 2019, 47, 477–486. [Google Scholar] [CrossRef]
- Markland, S.; Weppelmann, T.A.; Ma, Z. High Prevalence of Cefotaxime Resistant Bacteria in Grazing Beef Cattle: A Cross Sectional Study. Front. Microbiol. 2019, 10, 176. [Google Scholar] [CrossRef] [Green Version]
- Laxminarayan, R.; Chaudhury, R.R. Antibiotic Resistance in India: Drivers and Opportunities for Action. PLoS Med. 2016, 13, e1001974. [Google Scholar] [CrossRef] [Green Version]
- Wang, X. Massive Misuse of Antibiotics by University Students in All Regions of China: Implications for National Policy. Int. J. Antimicrob. Agents 2017, 50, 441–446. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peng, D.; Wang, X.; Xu, Y.; Sun, C.; Zhou, X. Antibiotic misuse among university students in developed and less developed regions of China: A cross-sectional survey. Glob. Health Action 2018, 11, 1496973. [Google Scholar] [CrossRef] [PubMed]
- Haddadin, R.N.; Alsous, M.; Wazaify, M.; Tahaineh, L. Evaluation of antibiotic dispensing practice in community pharmacies in Jordan: A cross sectional study. PLoS ONE 2019, 14, e0216115. [Google Scholar] [CrossRef] [Green Version]
- Archarya, K.P.; Wilson, R.T. Antimicrobial Resistance in Nepal. Front. Med. 2019, 6, 105. [Google Scholar] [CrossRef] [PubMed]
- Hadi, U.; van den Broek, P.; Kolopaking, E.P. Cross-sectional study of availability and pharmaceutical quality of antibiotics requested with or without prescription (Over The Counter) in Surabaya, Indonesia. BMC Infect. Dis. 2010, 10, 203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Source of Infection | Common Pathogens |
---|---|
Gastro-Duodenum | Streptococcus spp., E. coli |
Small/Large Bowel | E. coli, K. pneumoniae, P. mirabilis, Bacteroides spp., Clostridium spp., anaerobes |
Biliary Tree | Enterococcus spp., E. coli, K. pneumoniae, P. mirabilis, Bacteroides spp., Clostridium spp. |
Appendix | E. coli, P. aeruginosa, Bacteroides spp. |
Liver | Enterococcus spp., K. pneumoniae, E. coli, Bacteroides spp. |
Spleen | Streptococcus spp., Staphylococci |
Abscess | Enterococcus spp., E. coli, K. pneumoniae, Bacteroides spp., Clostridium spp., anaerobes |
Antimicrobial Agent | Targets | Approvals |
---|---|---|
Plazomicin | MDR E. coli, K. pneumoniae, P. mirabilis, A. baumannii | cUTI and pyelonephritis |
Tigecycline | ESBL, CR Enterobacteriaceae, A. baumannii | cIAI and cSSI |
Ceftolozane-tazobactam | MDR P. aeruginosa, Enterobacteriaceae spp. | cIAI, cUTI, HAP, and VAP |
Aztreonam-avibactam | ESBL A baumannii, P. aeruginosa (Ambler Class A-D) | cIAI |
Ceftazidime-avibactam | MDR Enterobacteriaceae spp., P. aeruginosa | cIAI, pyelonephritis, cUTI, HAP, and VAP |
Imipenem-colistatin-relebactam | MDR K. pneumoniae, P. aeruginosa | cUTI, cIAI |
Cefiderocol | MDR, CR P. aeruginosa, A. baumannii | cUTI, pyelonephritis |
Eravacycline | ESBL, CR Enterobacteriaceae spp., MRSA, A. baumannii, VRE | cUTI, cIAI |
Meropenem-vaborbactam | ESBL, CR Enterobacteriaceae (Ambler Class A and C) | cUTI, pyelonephritis, cIAI, HAP, VAP, and BSI |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morris, S.; Cerceo, E. Trends, Epidemiology, and Management of Multi-Drug Resistant Gram-Negative Bacterial Infections in the Hospitalized Setting. Antibiotics 2020, 9, 196. https://doi.org/10.3390/antibiotics9040196
Morris S, Cerceo E. Trends, Epidemiology, and Management of Multi-Drug Resistant Gram-Negative Bacterial Infections in the Hospitalized Setting. Antibiotics. 2020; 9(4):196. https://doi.org/10.3390/antibiotics9040196
Chicago/Turabian StyleMorris, Sabrina, and Elizabeth Cerceo. 2020. "Trends, Epidemiology, and Management of Multi-Drug Resistant Gram-Negative Bacterial Infections in the Hospitalized Setting" Antibiotics 9, no. 4: 196. https://doi.org/10.3390/antibiotics9040196
APA StyleMorris, S., & Cerceo, E. (2020). Trends, Epidemiology, and Management of Multi-Drug Resistant Gram-Negative Bacterial Infections in the Hospitalized Setting. Antibiotics, 9(4), 196. https://doi.org/10.3390/antibiotics9040196