Risk Factors of Initial Inappropriate Antibiotic Therapy and the Impacts on Outcomes of Neonates with Gram-Negative Bacteremia
Abstract
:1. Background
2. Patients and Methods
2.1. Setting and Study Design
2.2. Data Collection
2.3. Definitions
2.4. Statistical Analysis
2.5. Availability of Data and Materials
2.6. Ethics Approval and Consent to Participate
3. Results
3.1. The Epidemiology of Gram-Negative Bacteremia in the NICU
3.2. The Frequency of Inadequate Antibiotic Treatment of Gram-Negative Bacteremia
3.3. Factors Associated with Inadequate Empirical Antibiotic Treatment of Gram-Negative Bacteremia
3.4. The Outcome of Inadequate Empirically Treated Gram-Negative Bacteremia
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
CI | confidence interval; |
CSF | cerebrospinal fluid; |
CVC | central venous catheter; |
CGMH | Chang Gung Memorial Hospital; |
EOD | early-onset disease; |
ESBL | extended-spectrum β-lactamase; |
GNB | gram-negative bacteremia; |
GBS | Group B streptococcus; |
LOD | late-onset disease; |
NTISS | Neonatal Therapeutic Intervention Scoring System; |
OR | odds ratio; |
TPN | total parenteral nutrition. |
References
- Gowda, H.; Norton, R.; White, A.; Kandasamy, Y. Late-onset Neonatal Sepsis—A 10-year Review from North Queensland, Australia. Pediatr. Infect. Dis. J. 2017, 36, 883–888. [Google Scholar] [CrossRef]
- Ouchenir, L.; Renaud, C.; Khan, S.; Bitnun, A.; Boisvert, A.-A.; McDonald, J.; Bowes, J.; Brophy, J.; Barton, M.; Ting, J.; et al. The Epidemiology, Management, and Outcomes of Bacterial Meningitis in Infants. Pediatrics 2017, 140, 20170476. [Google Scholar] [CrossRef] [Green Version]
- Mohsen, L.; Ramy, N.; Saied, D.; Akmal, D.; Salama, N.; Halim, M.M.; Aly, H. Emerging antimicrobial resistance in early and late-onset neonatal sepsis. Antimicrob. Resist. Infect. Control. 2017, 6, 63. [Google Scholar] [CrossRef]
- Tsai, M.-H.; Chu, S.-M.; Hsu, J.-F.; Lien, R.; Huang, H.-R.; Chiang, M.-C.; Fu, R.-H.; Lee, C.-W.; Huang, Y.C. Risk Factors and Outcomes for Multidrug-Resistant Gram-Negative Bacteremia in the NICU. Pediatrics 2014, 133. [Google Scholar] [CrossRef] [Green Version]
- Folgori, L.; Tersigni, C.; Hsia, Y.; Kortsalioudaki, C.; Heath, P.T.; Sharland, M.; Bielicki, J. The relationship between Gram-negative colonization and bloodstream infections in neonates: A systematic review and meta-analysis. Clin. Microbiol. Infect. 2018, 24, 251–257. [Google Scholar] [CrossRef] [Green Version]
- Wu, I.-H.; Tsai, M.-H.; Lai, M.-Y.; Lee, C.-W.; Chiang, M.-C.; Lien, R.; Fu, R.-H.; Huang, H.-R.; Chu, S.-M.; Hsu, J.-F. Incidence, clinical features, and implications on outcomes of neonatal late-onset sepsis with concurrent infectious focus. BMC Infect. Dis. 2017, 17, 465. [Google Scholar] [CrossRef]
- Hsu, J.-F.; Chu, S.-M.; Huang, Y.C.; Lien, R.; Huang, H.-R.; Lee, C.-W.; Chiang, M.-C.; Fu, R.-H.; Tsai, M.-H. Predictors of clinical and microbiological treatment failure in neonatal bloodstream infections. Clin. Microbiol. Infect. 2015, 21, 482.e9–482.e17. [Google Scholar] [CrossRef] [Green Version]
- Neemann, K.; Olateju, E.K.; Izevbigie, N.; Akaba, G.; Olanipekun, G.M.; Richard, J.C.; Duru, C.I.; Kocmich, N.J.; Samson, K.K.; Rezac-Elgohary, A.; et al. Neonatal outcomes associated with maternal recto-vaginal colonization with extended-spectrum β-lactamase producing Enterobacteriaceae in Nigeria: A prospective, cross-sectional study. Clin. Microbiol. Infect. 2020, 26, 463–469. [Google Scholar] [CrossRef]
- Tauzin, M.; Ouldali, N.; Lévy, C.; Béchet, S.; Cohen, R.; Caeymaex, L. Combination therapy with ciprofloxacin and third-generation cephalosporin versus third-generation cephalosporin monotherapy in Escherichia coli meningitis in infants: A multicentre propensity score–matched observational study. Clin. Microbiol. Infect. 2019, 25, 1006–1012. [Google Scholar] [CrossRef]
- Gkentzi, D.; Kortsalioudaki, C.; Cailes, B.C.; Zaoutis, T.; Kopsidas, I.; Tsolia, M.; Spyridis, N.; Siahanidou, S.; Sarafidis, K.; Heath, P.T.; et al. Epidemiology of infections and antimicrobial use in Greek Neonatal Units. Arch. Dis. Child. Fetal Neonatal Ed. 2018, 104, F293–F297. [Google Scholar] [CrossRef]
- Lacy, M.K.; Stryjewski, M.E.; Wang, W.; Hardin, T.C.; Nogid, B.; Luke, D.R.; Corey, G.R.; Barriere, S.L.; Shorr, A.F. Telavancin Hospital-Acquired Pneumonia Trials: Impact of Gram-Negative Infections and Inadequate Gram-Negative Coverage on Clinical Efficacy and All-Cause Mortality. Clin. Infect. Dis. 2015, 61. [Google Scholar] [CrossRef] [Green Version]
- Fitzpatrick, J.M.; Biswas, J.S.; Edgeworth, J.D.; Islam, J.; Jenkins, N.; Judge, R.; Lavery, A.J.; Melzer, M.; Morris-Jones, S.; Nsutebu, E.F.; et al. Gram-negative bacteremia: A multi-center prospective evaluation of empiric antibiotic therapy and outcome in English acute hospitals. Clin. Microbiol. Infect. 2016, 22, 244–251. [Google Scholar] [CrossRef] [Green Version]
- Bartoletti, M.; Giannella, M.; Lewis, R.; Caraceni, P.; Tedeschi, S.; Paul, M.; Schramm, C.; Bruns, T.; Merli, M.; Cobos-Trigueros, N.; et al. A prospective multicentre study of the epidemiology and outcomes of bloodstream infection in cirrhotic patients. Clin. Microbiol. Infect. 2018, 24, 546.e1–546.e8. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Jiang, T.; Zhang, W.; Li, C.; Chen, J.; Xiang, D.; Cao, K.; Qi, L.-W.; Li, P.; Zhu, W.; et al. Predictors of mortality in bloodstream infections caused by multidrug-resistant gram-negative bacteria: 4 years of collection. Am. J. Infect. Control. 2017, 45, 59–64. [Google Scholar] [CrossRef]
- Apisarnthanarak, A.; Holzmann-Pazgal, G.; Hamvas, A.; Olsen, M.A.; Fraser, V. Antimicrobial Use and the Influence of Inadequate Empiric Antimicrobial Therapy on the Outcomes of Nosocomial Bloodstream Infections in a Neonatal Intensive Care Unit. Infect. Control. Hosp. Epidemiol. 2004, 25, 735–741. [Google Scholar] [CrossRef]
- Tsai, M.-H.; Hsu, J.-F.; Chu, S.-M.; Lien, R.; Huang, H.-R.; Chiang, M.-C.; Fu, R.-H.; Lee, C.-W.; Huang, Y.-C. Incidence, Clinical Characteristics and Risk Factors for Adverse Outcome in Neonates With Late-onset Sepsis. Pediatr. Infect. Dis. J. 2014, 33, e7–e13. [Google Scholar] [CrossRef]
- Litzow, J.M.; Gill, C.; Mantaring, J.B.V.; Fox, M.P.; MacLeod, W.; Mendoza, M.; Mendoza, S.; Scobie, R.; Huskins, C.W.; Goldman, D.A.; et al. High frequency of multidrug-resistant gram-negative rods in 2 neonatal intensive care units in the Philippines. Infect. Control. Hosp. Epidemiol. 2009, 30, 543–549. [Google Scholar] [CrossRef] [Green Version]
- Song, X.; Soghier, L.; Floyd, T.T.; Harris, T.R.; Short, B.; DeBiasi, R.L. Reassessing the need for active surveillance of extended-spectrum beta-lactamase–producing Enterobacteriaceae in the neonatal intensive care population. Infect. Control. Hosp. Epidemiol. 2018, 39, 1436–1441. [Google Scholar] [CrossRef]
- Gray, J.E.; Richardson, D.K.; McCormick, M.C.; Workman-Daniels, K.; A Goldmann, D. Neonatal therapeutic intervention scoring system: A therapy-based severity-of-illness index. Pediatrics 1992, 90, 561–567. [Google Scholar]
- Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing: Twenty-Second Informational Supplement M100-SCLSI; Elsevier: Wayne, PA, USA, 2012. [Google Scholar]
- Magiorakos, A.-P.; Srinivasan, A.; Carey, R.; Carmeli, Y.; Falagas, M.E.; Giske, C.; Harbarth, S.; Hindler, J.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef] [Green Version]
- Avery’s Diseases of the Newborn, 8th ed.; Taeusch, H.W.; Roberta Ballard, A.; Christine Gleason, A. (Eds.) Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Kermorvant-Duchemin, E.; Laborie, S.; Rabilloud, M.; Lapillonne, A.; Claris, O. Outcome and prognostic factors in neonates with septic shock. Pediatr. Crit. Care Med. 2008, 9, 186–191. [Google Scholar] [CrossRef]
- Harbarth, S.; Garbino, J.; Pugin, J.; A Romand, J.; Lew, D.; Pittet, D. Inappropriate initial antimicrobial therapy and its effect on survival in a clinical trial of immunomodulating therapy for severe sepsis. Am. J. Med. 2003, 115, 529–535. [Google Scholar] [CrossRef]
- McDonald, J.R.; Friedman, N.D.; Stout, J.E.; Sexton, D.J.; Kaye, K.S. Risk Factors for Ineffective Therapy in Patients With Bloodstream Infection. Arch. Intern. Med. 2005, 165, 308. [Google Scholar] [CrossRef]
- Le, J.; Nguyen, T.; Okamoto, M.; McKamy, S.; Lieberman, J.M. Impact of Empiric Antibiotic Use on Development of Infections caused by Extended-Spectrum ??-Lactamase Bacteria in a Neonatal Intensive Care Unit. Pediatr. Infect. Dis. J. 2008, 27, 314–318. [Google Scholar] [CrossRef]
- Linkin, D.R.; Fishman, N.O.; Patel, J.B.; Merrill, J.D.; Lautenbach, E. Risk Factors for Extended-Spectrum Beta-Lactamase-Producing Enterobacteriaceae in a Neonatal Intensive Care Unit. Infect. Control. Hosp. Epidemiology 2004, 25, 781–783. [Google Scholar] [CrossRef]
- Ong, D.S.Y.; Jongerden, I.P.; Buiting, A.G.; Hall, M.A.L.-V.; Speelberg, B.; Kesecioglu, J.; Bonten, M.J.M. Antibiotic exposure and resistance development in Pseudomonas aeruginosa and Enterobacter species in intensive care units. Crit. Care Med. 2011, 39, 2458–2463. [Google Scholar] [CrossRef]
- Ye, Y.; Li, J.B.; Ye, D.Q.; Jiang, Z.J. Enterobacter Bacteremia: Clinical Features, Risk Factors for Multiresistance and Mortality in a Chinese University Hospital. Infection 2006, 34, 252–257. [Google Scholar] [CrossRef]
- Fraser, A.; Paul, M.; Almanasreh, N.; Tacconelli, E.; Frank, U.; Cauda, R.; Borok, S.; Cohen, M.; Andreassen, S.; Nielsen, A.D.; et al. Benefit of Appropriate Empirical Antibiotic Treatment: Thirty-day Mortality and Duration of Hospital Stay. Am. J. Med. 2006, 119, 970–976. [Google Scholar] [CrossRef]
- Marra, A.R.; De Almeida, S.M.; Correa, L.; Junior, M.S.; Martino, M.D.V.; Silva, C.V.; Cal, R.G.R.; Edmond, M.B.; Dos Santos, O.F. The effect of limiting antimicrobial therapy duration on antimicrobial resistance in the critical care setting. Am. J. Infect. Control. 2009, 37, 204–209. [Google Scholar] [CrossRef]
- Cook, P.P.; Catrou, P.G.; Christie, J.D.; Young, P.D.; Polk, R.E. Reduction in broad-spectrum antimicrobial use associated with no improvement in hospital antibiogram. J. Antimicrob. Chemother. 2004, 53, 853–859. [Google Scholar] [CrossRef] [Green Version]
- Maltezou, H.C.; Tryfinopoulou, K.; Katerelos, P.; Ftika, L.; Pappa, O.; Tseroni, M.; Kostis, E.; Kostalos, C.; Prifti, H.; Tzanetou, K.; et al. Consecutive Serratia marcescens multiclone outbreaks in a neonatal intensive care unit. Am. J. Infect. Control. 2012, 40, 637–642. [Google Scholar] [CrossRef] [PubMed]
- Simmonds, A.; Muñoz, J.; Aguero-Rosenfeld, M.; Carbonaro, C.; Montecalvo, M.; Clones, B.; LaGamma, E.F. Outbreak of Acinetobacter Infection in Extremely Low Birth Weight Neonates. Pediatr. Infect. Dis. J. 2009, 28, 210–214. [Google Scholar] [CrossRef] [PubMed]
- Makhoul, I.R.; Sujov, P.; Smolkin, T.; Lusky, A.; Reichman, B. Pathogen-Specific Early Mortality in Very Low Birth Weight Infants with Late-Onset Sepsis: A National Survey. Clin. Infect. Dis. 2005, 40, 218–224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abdel-Hady, H.; Hawas, S.; El-Daker, M.; El-Kady, R. Extended-spectrum β-lactamase producing Klebsiella pneumoniae in neonatal intensive care unit. J. Perinatol. 2008, 28, 685–690. [Google Scholar] [CrossRef] [Green Version]
- Cantey, J.B.; Wozniak, P.S.; Sánchez, P.J. Prospective Surveillance of Antibiotic Use in the Neonatal Intensive Care Unit. Pediatr. Infect. Dis. J. 2015, 34, 267–272. [Google Scholar] [CrossRef] [Green Version]
- Nzegwu, N.I.; Rychalsky, M.R.; Nallu, L.A.; Song, X.; Deng, Y.; Natusch, A.M.; Baltimore, R.S.; Paci, G.R.; Bizzarro, M.J. Implementation of an Antimicrobial Stewardship Program in a Neonatal Intensive Care Unit. Infect. Control. Hosp. Epidemiol. 2017, 38, 1137–1143. [Google Scholar] [CrossRef] [Green Version]
- Shabaan, A.E.; Nour, I.; Eldegla, H.E.; Nasef, N.; Shouman, B.; Abdel-Hady, H. Conventional Versus Prolonged Infusion of Meropenem in Neonates With Gram-negative Late-onset Sepsis. Pediatr. Infect. Dis. J. 2017, 36, 358–363. [Google Scholar] [CrossRef]
- Nordberg, V.; Jonsson, K.; Giske, C.; Iversen, A.; Aspevall, O.; Jonsson, B.; Camporeale, A.; Norman, M.; Naver, L. Neonatal intestinal colonization with extended-spectrum β-lactamase–producing Enterobacteriaceae—A 5-year follow-up study. Clin. Microbiol. Infect. 2018, 24, 1004–1009. [Google Scholar] [CrossRef] [Green Version]
Microorganism | Total Case No. (%) | Inadequate Treatment, n (% of Each Type of Bacteria) |
---|---|---|
Early-onset sepsis | 22 (5.9) | |
Escherichia coli | 16 (4.3) | 2 (12.5) |
Others | 6 (1.6) | 1 (16.7) |
Late-onset sepsis | 354 (94.1) | |
Klebsiella pneumoniae | 82 (21.8) | 15 (18.3) |
Escherichia coli | 76 (20.2) | 12 (15.8) |
Acinetobacter baumannii | 43 (11.4) | 4 (9.3) |
Klebsiella oxytoca | 39 (10.4) | 5 (12.8) |
Enterobacter cloacae | 26 (6.9) | 8 (30.8) |
Enterobacter aerogenes | 17 (4.5) | 4 (23.5) |
Pseudomonas aeruginosa | 16 (4.3) | 12 (75.0) |
Serratia marcescens | 10 (2.7) | 0 (0) |
Others * | 12 (3.2) | 4 (33.3) |
Polymicrobial organisms ¶ | 33 (8.8) | 8 (24.2) |
Total | 376 (100) | 75 (19.9) |
ESBL producing bacteria & | 47 (12.5) | 34 (72.3) |
Case No. (%) (Total n = 376) | Univariate Analysis | Multivariate Analysis Odds Ratio (95% CI) | |||
---|---|---|---|---|---|
Inadequate Treatment (n = 75) | Adequate Treatment (n = 301) | P Value | |||
Gestational age (weeks), median (IQR) | 30.0 (27.0–35.0) | 31.0 (27.0–36.0) | 30.0 (27.0–35.0) | 0.192 | - |
Birth body weight (g), median (IQR) | 1345.0 (900.0–2051.3) | 1600.0 (960.0–2135.0) | 1265.0 (895.0–2020.0) | 0.084 | - |
Male gender | 191 (50.8) | 35 (46.7) | 156 (51.8) | 0.518 | - |
Day of bacteremia onset, median (IQR) | 25.0 (13.0–54.0) | 31.0 (13.0–66.0) | 24.0 (13.3–52.8) | 0.136 | - |
Late-onset sepsis | 354 (94.1) | 72 (96.0) | 282 (93.7) | 0.854 | - |
Episode sequence of bacteremia | 0.018 | ||||
1st episode | 279 (74.2) | 47 (62.7) | 232 (77.1) | 1 (reference) | |
Recurrent episode | 97 (25.8) | 28 (37.3) | 69 (22.9) | 1.41 (0.78–2.58) | |
Underlying chronic conditions | |||||
Congenital anomalies | 24 (6.4) | 5 (6.6) | 19 (6.3) | 1.000 | - |
Neurological sequelaes | 57 (15.2) | 12 (16.0) | 45 (15.0) | 0.858 | - |
Bronchopulmonary dysplasia | 170 (45.2) | 31 (41.3) | 139 (46.1) | 0.517 | - |
Chronic gastrointestinal pathology | 17 (4.5) | 4 (5.3) | 13 (4.3) | 0.710 | - |
Others | 23 (6.1) | 6 (8.0) | 17 (5.6) | 0.427 | - |
Use of central venous catheter | 285 (75.8) | 59 (78.7) | 226 (75.1) | 0.551 | - |
On high frequency oscillatory ventilator | 37 (9.8) | 7 (9.3) | 30 (10.0) | 1.000 | - |
Under invasive ventilation (intubation) | 182 (48.4) | 35 (46.7) | 147 (48.8) | 0.797 | - |
Use of total parenteral nutrition/intrafat | 263 (69.9) | 56 (74.7) | 207 (68.8) | 0.398 | - |
Previous operation (within one month) | 56 (14.9) | 10 (13.3) | 46 (15.3) | 0.858 | - |
Use of steroid (within one month) | 13 (34.5) | 5 (6.6) | 8 (2.7) | 0.147 | - |
Antibiotic exposure (within one month) | |||||
3rd generation cephalosporin | 161 (42.8) | 47 (62.7) | 114 (37.9) | < 0.001 | 2.52 (1.19–5.37) |
Vancomycin or teicoplanin | 149 (39.6) | 41 (54.7) | 108 (35.9) | 0.004 | 0.96 (0.45–2.06) |
Carbapenem | 22 (5.9) | 6 (8.0) | 16 (5.3) | 0.409 | - |
Antifungal treatment | 12 (3.2) | 5 (6.7) | 7 (2.3) | 0.069 | - |
Clinical manifestations at bacteremia onset* | |||||
Sepsis-induced hypotension | 96 (25.5) | 22 (29.3) | 74 (24.6) | 0.371 | - |
GI bleeding and/or coagulopathy | 147 (39.1) | 29 (38.6) | 118 (39.2) | 1.000 | - |
Disseminated intravascular coagulopathy | 67 (17.8) | 15 (20.0) | 52 (17.3) | 0.495 | - |
NTISS score, median (IQR) | 17.0 (13.0–20.0) | 17.0 (12.0–20.0) | 17.0 (14.0–20.0) | 0.455 | - |
Laboratory data at onset of bacteremia | |||||
Leukopenia (WBC count < 4000/uL) | 94 (25.0) | 16 (21.3) | 78 (25.9) | 0.459 | - |
Leukocytosis (WBC count > 20,000/uL) | 116 (30.9) | 28 (37.3) | 88 (29.2) | 0.208 | - |
WBC shift to left ** | 90 (23.9) | 21 (28.0) | 69 (22.9) | 0.366 | - |
Anemia (hemoglobin < 11.0 mg/dL) | 180 (47.9) | 39 (52.0) | 141 (46.8) | 0.441 | - |
Thrombocytopenia (platelet < 80,000/uL) | 189 (50.3) | 41 (54.7) | 148 (49.2) | 0.439 | - |
C-reactive protein (mg/dL), median (IQR) | 60.4 (31.9–112) | 78.0 (38.8–136) | 59.1 (28.0–103) | 0.038 | - |
Metabolic acidosis | 111 (29.5) | 24 (32.0) | 87 (28.9) | 0.671 | - |
Inadequate Treatment (n = 75) | Adequate Treatment (n = 301) | P Value | |
---|---|---|---|
Persistent bacteremia* | 3 (4.0) | 6 (2.0) | 0.309 |
Prolonged ileus and/or feeding intolerance (> 3 days) | 30 (40.0) | 53 (17.6) | < 0.001 |
Progression to septic shock or severe sepsis¶ | 14 (18.7) | 16 (5.3) | 0.002 |
NTISS scores at the third day of bacteremia, median (IQR) | 17.0 (12.0–20.0) | 15.5 (12.0–18.0) | 0.010 |
Infectious complications# | 19 (25.3) | 28 (9.3) | < 0.001 |
Major organ damage | 15 (20.0) | 20 (6.6) | 0.001 |
Newly infectious focus | 8 (10.7) | 13 (4.3) | 0.046 |
Early mortality (within 7 days) | 9 (12.0) | 23 (7.6) | 0.250 |
Overall mortality (within 30 days due to any reason) | 17 (22.7) | 33 (11.0) | 0.013 |
Recurrent bacteremia within one month | 5 (6.7) | 33 (11.0) | 0.390 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chu, S.-M.; Hsu, J.-F.; Lai, M.-Y.; Huang, H.-R.; Chiang, M.-C.; Fu, R.-H.; Tsai, M.-H. Risk Factors of Initial Inappropriate Antibiotic Therapy and the Impacts on Outcomes of Neonates with Gram-Negative Bacteremia. Antibiotics 2020, 9, 203. https://doi.org/10.3390/antibiotics9040203
Chu S-M, Hsu J-F, Lai M-Y, Huang H-R, Chiang M-C, Fu R-H, Tsai M-H. Risk Factors of Initial Inappropriate Antibiotic Therapy and the Impacts on Outcomes of Neonates with Gram-Negative Bacteremia. Antibiotics. 2020; 9(4):203. https://doi.org/10.3390/antibiotics9040203
Chicago/Turabian StyleChu, Shih-Ming, Jen-Fu Hsu, Mei-Yin Lai, Hsuan-Rong Huang, Ming-Chou Chiang, Ren-Huei Fu, and Ming-Horng Tsai. 2020. "Risk Factors of Initial Inappropriate Antibiotic Therapy and the Impacts on Outcomes of Neonates with Gram-Negative Bacteremia" Antibiotics 9, no. 4: 203. https://doi.org/10.3390/antibiotics9040203
APA StyleChu, S. -M., Hsu, J. -F., Lai, M. -Y., Huang, H. -R., Chiang, M. -C., Fu, R. -H., & Tsai, M. -H. (2020). Risk Factors of Initial Inappropriate Antibiotic Therapy and the Impacts on Outcomes of Neonates with Gram-Negative Bacteremia. Antibiotics, 9(4), 203. https://doi.org/10.3390/antibiotics9040203