Antimicrobial and Antifungal Activities of Terpene-Derived Palladium Complexes
Abstract
:1. Introduction
2. Results and Discussion
2.1. Inhibition Agents
2.2. Antimicrobial Activity and Mammalian Cellular Toxicity
2.3. Antifungal Activity and Mammalian Cellular Toxicity
3. Materials and Methods
3.1. Synthesis of Complexes
3.2. Compound Preparation
3.3. Antibacterial Assays
3.4. Antifungal Assays
3.5. Cytotoxicity Assays
3.6. Haemolysis Assays
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Franz, K.J.; Metzler-Nolte, N. Introduction: Metals in Medicine. Chem. Rev. 2019, 119, 727–729. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mjos, K.D.; Orvig, C. Metallodrugs in Medicinal Inorganic Chemistry. Chem. Rev. 2014, 114, 4540–4563. [Google Scholar] [CrossRef] [PubMed]
- Frei, A. Metal Complexes, an Untapped Source of Antibiotic Potential? Antibiotics 2020, 9, 90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frei, A.; Zuegg, J.; Elliott, A.G.; Baker, M.V.; Braese, S.; Brown, C.; Chen, F.; Dowson, C.G.; Dujardin, G.; Jung, N.; et al. Metal Complexes as a Promising Source for New Antibiotics. Chem. Sci. 2020, 11, 2627–2639. [Google Scholar] [CrossRef] [Green Version]
- Medici, S.; Peana, M.; Crisponi, G.; Nurchi, V.M.; Lachowicz, J.I.; Remelli, M.; Zoroddu, M.A. Silver coordination compounds: A new horizon in medicine. Coord. Chem. Rev. 2016, 327, 349–359. [Google Scholar] [CrossRef]
- Kascatan-Nebioglu, A.; Panzner, M.J.; Tessier, C.A.; Cannon, C.L.; Youngs, W.J. N-Heterocyclic carbene–silver complexes: A new class of antibiotics. Coord. Chem. Rev. 2007, 251, 884–895. [Google Scholar] [CrossRef]
- Mora, M.; Gimeno, M.C.; Visbal, R. Recent advances in gold–NHC complexes with biological properties. Chem. Soc. Rev. 2019, 48, 447–462. [Google Scholar] [CrossRef]
- Glišić, B.Đ.; Djuran, M.I. Gold complexes as antimicrobial agents: An overview of different biological activities in relation to the oxidation state of the gold ion and the ligand structure. Dalton Trans. 2014, 43, 5950–5969. [Google Scholar] [CrossRef]
- Li, H.; Sun, H. Recent advances in bioinorganic chemistry of bismuth. Curr. Opin. Chem. Biol. 2012, 16, 74–83. [Google Scholar] [CrossRef] [Green Version]
- Goss, C.H.; Kaneko, Y.; Khuu, L.; Anderson, G.D.; Ravishankar, S.; Aitken, M.L.; Lechtzin, N.; Zhou, G.; Czyz, D.M.; McLean, K.; et al. Gallium disrupts bacterial iron metabolism and has therapeutic effects in mice and humans with lung infections. Sci. Transl. Med. 2018, 10, eaat7520. [Google Scholar] [CrossRef] [Green Version]
- Bonchi, C.; Imperi, F.; Minandri, F.; Visca, P.; Frangipani, E. Repurposing of gallium-based drugs for antibacterial therapy. BioFactors 2014, 40, 303–312. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Feterl, M.; Mulyana, Y.; Warner, J.M.; Collins, J.G.; Keene, F.R. In Vitro susceptibility and cellular uptake for a new class of antimicrobial agents: Dinuclear ruthenium(II) complexes. J. Antimicrob. Chemother. 2012, 67, 2686–2695. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bolhuis, A.; Hand, L.; Marshall, J.E.; Richards, A.D.; Rodger, A.; Aldrich-Wright, J. Antimicrobial activity of ruthenium-based intercalators. Eur. J. Pharm. Sci. 2011, 42, 313–317. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lazarević, T.; Rilak, A.; Bugarčić, Ž.D. Platinum, palladium, gold and ruthenium complexes as anticancer agents: Current clinical uses, cytotoxicity studies and future perspectives. Eur. J. Med. Chem. 2017, 142, 8–31. [Google Scholar] [CrossRef]
- Pengpeng, J.; Ruizhuo, O.; Penghui, C.; Xiao, T.; Xia, Z.; Tian, L. Recent advances and future development of metal complexes as anticancer agents. J. Coord. Chem. 2017, 70, 2175–2201. [Google Scholar] [CrossRef]
- Medici, S.; Peana, M.; Nurchi, V.M.; Lachowicz, J.I.; Crisponi, G.; Zoroddu, M.A. Noble metals in medicine: Latest advances. Coord. Chem. Rev. 2015, 284, 329–350. [Google Scholar] [CrossRef]
- Gaber, M.; Awad, M.K.; Atlam, F.M. Pd (II) complexes of bidentate chalcone ligands: Synthesis, spectral, thermal, antitumor, antioxidant, antimicrobial, DFT and SAR studies. J. Mol. Struct. 2018, 1160, 348–359. [Google Scholar] [CrossRef]
- Prasad, K.S.; Kumar, L.S.; Chandan, S.; Kumar, R.M.N.; Revanasiddappa, H.D. Palladium(II) complexes as biologically potent metallo-drugs: Synthesis, spectral characterization, DNA interaction studies and antibacterial activity. Spectrochim. Acta. Part A 2013, 107, 108–116. [Google Scholar] [CrossRef]
- Choo, K.B.; Mah, W.L.; Lee, S.M.; Lee, W.L.; Cheow, Y.L. Palladium complexes of bidentate pyridine N-heterocyclic carbenes: Optical resolution, antimicrobial and cytotoxicity studies. Appl. Organomet. Chem. 2018, 32, e4377. [Google Scholar] [CrossRef]
- Bangde, R.; Prajapati, D.; Dandekar, P.; Fairlamb, I.J.S.; Kapdi, A.R. Palladacycles as Potential Anticancer Agents. In Palladacycles Catalysis and Beyond; Kapdi, A.R., Maiti, D., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 343–370. [Google Scholar] [CrossRef]
- Scientific Roadmap for Antibiotic Discovery. Pew Charitable Trusts. Available online: http://www.pewtrusts.org/antibiotic-discovery (accessed on 16 May 2020).
- Tacconelli, E.; Carrara, E.; Savoldi, A.; Harbarth, S.; Mendelson, M.; Monnet, D.L.; Pulcini, C.; Kahlmeter, G.; Kluytmans, J.; Carmeli, Y.; et al. Discovery, research, and development of new antibiotics: The WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect. Dis. 2018, 18, 318–327. [Google Scholar] [CrossRef]
- Czaplewski, L.; Bax, R.; Clokie, M.; Dawson, M.; Fairhead, H.; Fischetti, V.A.; Foster, S.; Gilmore, B.F.; Hancock, R.E.; Harper, D.; et al. Alternatives to antibiotics—A pipeline portfolio review. Lancet Infect. Dis. 2016, 16, 239–251. [Google Scholar] [CrossRef] [Green Version]
- Hansford, K.A.; Blaskovich, M.A.T.; Cooper, M.A. Chemical philanthropy: A path forward for antibiotic discovery? Fut. Med. Chem. 2016, 8, 925–929. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cooper, M.A. A community-based approach to new antibiotic discovery. Nat. Rev. Drug Discov. 2015, 14, 587–588. [Google Scholar] [CrossRef]
- Rice, L.B. Federal Funding for the Study of Antimicrobial Resistance in Nosocomial Pathogens: No ESKAPE. J. Infect. Dis. 2008, 197, 1079–1081. [Google Scholar] [CrossRef] [PubMed]
- CDC. Antibiotic Resistance Threats in the United States, 2019. Atlanta, GA: U.S. Department of Health and Human Services, CDC. 2019. Available online: www.cdc.gov/DrugResistance/Biggest-Threats.html (accessed on 16 May 2020).
- Zalevskaya, O.A.; Gur’eva, Y.A.; Kutchin, A.V. Terpene ligands in the coordination chemistry: Synthesis of metal complexes, stereochemistry, catalytic properties, and biological activity. Russ. Chem. Rev. 2019, 88, 979–1012. [Google Scholar] [CrossRef]
- Dunina, V. Chiral Cyclopalladated Compounds: New Structures, Methodologies and Applications. A Personal Account. Curr. Org. Chem. 2011, 15, 3415–3440. [Google Scholar] [CrossRef]
- Zalevskaya, O.A.; Gur’eva, Y.A.; Frolova, L.L.; Alekseev, I.N.; Kuchin, A.V. Chiral palladium complexes based on derivatives of benzylamine and 2α-hydroxypinan-3-one. Nat. Sci. 2010, 2, 1189–1194. [Google Scholar] [CrossRef] [Green Version]
- Gur’eva, Y.A.; Alekseev, I.N.; Frolova, L.L.; Kuchin, A.V.; Zalevskaya, O.A.; Slepukhin, P.A. New optically active CN-palladacycles based on 2α-hydroxypinan-3-one and camphor derivatives. Chem. Nat. Comp. 2014, 50, 648–651. [Google Scholar] [CrossRef]
- Gur’eva, Y.A.; Alekseev, I.N.; Frolova, L.L.; Kuchin, A.V.; Zalevskaya, O.A.; Slepukhin, P.A. Stereoselective cyclopalladation of 2,3-camphorquinone 3-diphenylmethylimine. Russ. Chem. Bull. 2014, 63, 1543–1546. [Google Scholar] [CrossRef]
- Gur’eva, Y.A.; Alekseev, I.N.; Kutchin, A.V.; Zalevskaya, O.A.; Slepukhin, P.A. Synthesis of new bidentate ligands-terpene derivatives of ethylenediamine and their palladium complexes. Russ. J. Org. Chem. 2016, 52, 781–784. [Google Scholar] [CrossRef]
- Gur’eva, Y.A.; Alekseev, I.N.; Dvornikova, I.A.; Zalevskaya, O.A.; Kutchin, A.V. Synthesis and characterization of new palladium complexes based on polydentate chiral Schiff base and amines ligands derived from (+)-2-hydroxypinan-3-one. Inorg. Chim. Acta 2018, 477, 300–305. [Google Scholar] [CrossRef]
- Gur’eva, Y.A.; Zalevskaya, O.A.; Alekseev, I.N.; Slepukhin, P.A.; Kutchin, A.V. Synthesis of new chiral palladium complexes with multidentate camphor Schiff bases. Russ. J. Org. Chem. 2018, 54, 1285–1289. [Google Scholar] [CrossRef]
- Gur’eva, Y.A.; Slepukhin, P.A.; Kutchin, A.V. Palladium (II) complexes based on bidentate chiral Schiff base and amine ligands derived from (−)-myrtenal: Synthesis, characterization and catalytic activity in Suzuki reaction. Inorg. Chim. Acta 2019, 486, 602–607. [Google Scholar] [CrossRef]
Compound | S. aureus ATCC 43300 | C. albicans ATCC 90028 | C. neoformans ATCC 208821 | CC50 | HC10 |
---|---|---|---|---|---|
1 | 4 | 1 | 0.5 | 11.9 | 3.9 |
2 | 1 | 0.5 | ≤0.25 | 12.4 | 1.8 |
3 | 16 | 2 | 0.5 | 6.0 | >32 |
4 | 32 | 1 | ≤0.25 | 16.6 | 5.6 |
5 | 16 | 2 | 1 | 2.9 | 5.6 |
6 | 8 | 8 | 4 | 4.5 | 7.8 |
7 | >32 | 16 | 4 | >32 | >32 |
8 | >32 | 8 | 4 | >32 | 6.9 |
9 | >32 | 16 | 2 | >32 | >32 |
10 | >32 | 4 | 4 | >32 | 4.6 |
11 | >32 | ≤0.25 | ≤0.25 | 10.8 | >32 |
12 | >32 | 2 | ≤0.25 | >32 | >32 |
vancomycin | 1 | -- | -- | -- | -- |
fluconazole | -- | 0.125 | 8 | -- | -- |
tamoxifen | -- | -- | -- | 9 | -- |
melittin | -- | -- | -- | -- | 2.7 |
Selectivity Index (SI) | ||||
---|---|---|---|---|
Cmpd | S. aureus (MRSA) | C. neoformans | ||
CC50/MIC | HC10/MIC | CC50/MIC | HC10/MIC | |
1 | 3.0 | 1.0 | 23.8 | 7.8 |
2 | 12.4 | 1.8 | >49.6 | >7.2 |
3 | 0.4 | >2 | 12.0 | >64 |
4 | 0.5 | 0.2 | >66.4 | >22.4 |
5 | 0.2 | 0.4 | 2.9 | 5.6 |
6 | 0.6 | 1.0 | 1.1 | 2.0 |
7 | N/A | N/A | > 8 | >8 |
8 | N/A | ≤0.2 | > 8 | 1.7 |
9 | N/A | N/A | > 16 | >16 |
10 | N/A | ≤0.1 | > 8 | 1.2 |
11 | ≤0.3 | N/A | > 43.2 | >128 |
12 | N/A | N/A | > 128 | >128 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zalevskaya, O.; Gur’eva, Y.; Kutchin, A.; Hansford, K.A. Antimicrobial and Antifungal Activities of Terpene-Derived Palladium Complexes. Antibiotics 2020, 9, 277. https://doi.org/10.3390/antibiotics9050277
Zalevskaya O, Gur’eva Y, Kutchin A, Hansford KA. Antimicrobial and Antifungal Activities of Terpene-Derived Palladium Complexes. Antibiotics. 2020; 9(5):277. https://doi.org/10.3390/antibiotics9050277
Chicago/Turabian StyleZalevskaya, Olga, Yana Gur’eva, Aleksandr Kutchin, and Karl A. Hansford. 2020. "Antimicrobial and Antifungal Activities of Terpene-Derived Palladium Complexes" Antibiotics 9, no. 5: 277. https://doi.org/10.3390/antibiotics9050277
APA StyleZalevskaya, O., Gur’eva, Y., Kutchin, A., & Hansford, K. A. (2020). Antimicrobial and Antifungal Activities of Terpene-Derived Palladium Complexes. Antibiotics, 9(5), 277. https://doi.org/10.3390/antibiotics9050277