Identification of Genetic Alterations Associated with Acquired Colistin Resistance in Klebsiella pneumoniae Isogenic Strains by Whole-Genome Sequencing
Abstract
:1. Introduction
2. Results
2.1. Antimicrobial Susceptibility
2.2. Mutations in Colistin-Resistant Isolates
2.3. Orthologs Involved in Colistin Resistance
2.4. Change of mRNA Levels in Candidate Genes Associated with Colistin Resistance
2.5. Confirmation of the Role of KP1_0061 and KP1_3620 Gene in Colistin Resistance
3. Discussion
4. Materials and Methods
4.1. Bacterial Strains
4.2. Pulsed-Field Gel Electrophoresis (PFGE)
4.3. In Vitro Antimicrobial Susceptibility Testing
4.4. Genome Sequencing and Confirmation of Genetic Variants
4.5. Identification of Orthologous Genes
4.6. mRNA Expression Analysis
4.7. Complementation Assay
4.8. Colistin Susceptibility Testing
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Tzouvelekis, L.S.; Markogiannakis, A.; Psichogiou, M.; Tassios, P.T.; Daikos, G.L. Carbapenemases in Klebsiella pneumoniae and other Enterobacteriaceae: An evolving crisis of global dimensions. Clin. Microbiol. Rev. 2012, 25, 682–707. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nation, R.L.; Li, J. Colistin in the 21st century. Curr. Opin. Infect. Dis. 2010, 22, 535–543. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.K.; Peck, K.R.; Cheong, H.S.; Chung, D.R.; Song, J.H.; Ko, K.S. Extreme drug resistance in Acinetobacter baumannii infections in intensive care units, South Korea. Emerg. Infect. Dis. 2009, 15, 1325–1327. [Google Scholar] [CrossRef] [PubMed]
- Kanazawa, K.; Sato, Y.; Ohki, K.; Okimura, K.; Uchida, Y.; Shindo, M.; Sakura, N. Contribution of each amino acid residue in polymyxinB(3) to antimicrobial and lipopolysaccharide binding activity. Chem. Pharm. Bull. (Tokyo) 2009, 57, 240–244. [Google Scholar] [CrossRef] [Green Version]
- Cannatelli, A.; D’Andrea, M.M.; Giani, T.; Di Pilato, V.; Arena, F.; Ambretti, S.; Gaibani, P.; Rossolini, G.M. In vivo emergence of colistin resistance in Klebsiella pneumoniae producing KPC-type carbapenemases mediated by insertional inactivation of the PhoQ/PhoP mgrB regulator. Antimicrob. Agents Chemother. 2013, 57, 5521–5526. [Google Scholar] [CrossRef] [Green Version]
- Cheng, H.Y.; Chen, Y.F.; Peng, H.L. Molecular characterization of the PhoPQ-PmrD-PmrAB mediated pathway regulating polymyxin B resistance in Klebsiella pneumoniae CG43. J. Biomed. Sci. 2010, 17, 60. [Google Scholar] [CrossRef] [Green Version]
- Dalmolin, T.V.; Lima-Morales, D.; Barth, A.L. Plasmid-mediated colistin resistance: What do we know? J. Infect. 2018, 1, 16–22. [Google Scholar] [CrossRef]
- Moffatt, J.H.; Harper, M.; Harrison, P.; Hale, J.D.; Vinogradov, E.; Seemann, T.; Henry, R.; Crane, B.; St Michael, F.; Cox, A.D.; et al. Colistin resistance in Acinetobacter baumannii is mediated by complete loss of lipopolysaccharide production. Antimicrob. Agents Chemother. 2010, 54, 4971–4977. [Google Scholar] [CrossRef] [Green Version]
- Cannatelli, A.; Giani, T.; D’Andrea, M.M.; Pilato, V.D.; Arena, F.; Conte, V.; Tryfinopoulou, K.; Vatopoulos, A.; Rossolini, G.M.; COLGRIT Study Group. MgrB inactivation is a common mechanism of colistin resistance in KPC-producing Klebsiella pneumoniae of clinical origin. Antimicrob. Agents Chemother. 2014, 58, 5696–5703. [Google Scholar] [CrossRef] [Green Version]
- Köser, C.U.; Ellington, M.J.; Peacock, S.J. Whole-genome sequencing to control antimicrobial resistance. Trends Genet. 2014, 30, 401–407. [Google Scholar] [CrossRef] [Green Version]
- Fernández, L.; Alvarez-Ortega, C.; Wiegand, I.; Olivares, J.; Kocíncová, D.; Lam, J.S.; Martínez, J.L.; Hancock, R.E.W. Characterization of the polymyxin B resistome of Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 2013, 57, 110–119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Snitkin, E.S.; Zelany, A.M.; Gupta, J.; NISC Comparative Sequencing Program; Palmore, T.N.; Murray, P.R.; Segre, J.A. Genomic insights into the fate of colistin resistance and Acinetobacter baumannii during patient treatment. Genome Res. 2013, 23, 1155–1162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, J.Y.; Na, I.Y.; Park, Y.K.; Ko, K.S. Genomic variations between colistin-susceptible and -resistant Pseudomonas aeruginosa clinical isolates and their effects on colistin resistance. J. Antimicrob. Chemother. 2014, 69, 1248–1256. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- López-Camacho, E.; Gómez-Gil, R.; Tobes, R.; Tobes, R.; Manrique, M.; Lorenzo, M.; Galván, B.; Salvarelli, E.; Moatassim, Y.; Salanueva, I.J.; et al. Genomic analysis of the emergence and evolution of multidrug resistance during a Klebsiella pneumoniae outbreak including carbapenem and colistin resistance. J. Antimicrob. Chemother. 2014, 69, 632–636. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ko, K.S.; Lee, J.Y.; Baek, J.Y.; Suh, J.Y.; Lee, M.Y.; Choi, J.Y.; Yeom, J.S.; Kim, Y.S.; Jung, S.I.; Shin, S.Y.; et al. Predominance of an ST11 extended-spectrum beta-lactamase-producing Klebsiella pneumoniae clone causing bacteraemia and urinary tract infections in Korea. J. Med. Microbiol. 2010, 59, 822–828. [Google Scholar] [CrossRef] [PubMed]
- Chung, D.R.; Lee, H.; Park, M.H.; Jung, S.I.; Chang, H.H.; Kim, Y.S.; Son, J.S.; Moon, C.; Kwon, K.T.; Ryu, S.Y.; et al. Fecal carriage of serotype K1 Klebsiella pneumoniae ST23 strains closely related to liver abscess isolates in Koreans living in Korea. Eur. J. Clin. Microbiol. Infect. Dis. 2012, 31, 481–486. [Google Scholar] [CrossRef] [PubMed]
- Hua, X.; Wang, H.; Wang, C.; Shen, H.; Song, Y.; Wang, X.; Shao, S.; Hua, X.; Cui, L. Global effect of an RNA polymerase β-subunit mutation on gene expression in the radiation-resistant bacterium Deinococcus radiodurans. Sci. China Life Sci. 2011, 54, 854–862. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, Y.K.; Choi, J.Y.; Shin, D.; Ko, K.S. Correlation between overexpression and amino acid substitution of the PmrAB locus and colistin resistance in Acinetobacter baumannii. Int. J. Antimicrob. Agents 2011, 37, 525–530. [Google Scholar] [CrossRef]
- Lev, A.I.; Astashkin, E.I.; Shaikhutdinova, R.Z.; Platonov, M.E.; Kartsev, N.N.; Volozhantsev, N.V.; Ershova, O.N.; Svetoch, E.A.; Fursova, N.K. Identification of IS1R and IS10R elements inserted into ompk36 porin gene of two multidrug-resistant Klebsiella Pneumoniae hospital strains. FEMS Microbiol. Lett. 2017, 364. [Google Scholar] [CrossRef]
- Peng, H.L.; Fu, T.F.; Liu, S.F.; Chang, H.Y. Cloning and expression of the Klebsiella pneumoniae galactose operon. J. Biochem. 1992, 112, 604–608. [Google Scholar] [CrossRef]
- Liu, Y.; Li, S.; Li, W.; Wang, P.; Ding, P.; Li, L.; Wang, J.; Yang, P.; Wang, Q.; Xu, T.; et al. RstA, a two-component response regulator, plays important roles in multiple virulence-associated processes in enterohemorrhagic Escherichia coli O157:H7. Gut Pathog. 2019, 11, 53. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.C.; Chang, C.K.; Chang, C.F.; Cheng, Y.H.; Fang, P.J.; Yu, T.; Chen, S.C.; Li, Y.C.; Hsiao, C.D.; Huang, T. Structural dynamics of the two-component response regulator RstA in recognition of promoter DNA element. Nucleic Acids Res. 2014, 42, 8777–8778. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Diancourt, L.; Passet, V.; Verhoet, J.; Grimont, P.A.D.; Brisse, S. Multilocus Sequence typing of Klebsiella pneumoniae nosocomial isolates. J. Clin. Microbiol. 2005, 43, 4178–4182. [Google Scholar] [CrossRef] [Green Version]
- Rhee, J.Y.; Song, J.H.; Ko, K.S. Current situation of antimicrobial resistance and genetic differences in Stenotrophomonas maltophilia complex isolates by multilocus variable number of tandem repeat analysis. Infect. Chemother. 2016, 48, 285–293. [Google Scholar] [CrossRef]
- Clinical and Laboratory Standards Institute. Performance Standards for Antimicobial Susceptibility Testing: 23rd Informational Supplement M100-S28; CLSI: Wayne, PA, USA, 2018. [Google Scholar]
- Rojas, L.J.; Salim, M.; Cober, E.; Richter, S.S.; Perez, F.; Salata, R.A.; Kalayjian, R.C.; Watkins, R.R.; Marshall, S.; Rudin, S.D.; et al. Colistin resistance in carbapenem-resistant Klebsiella pneumoniae: Laboratory detection and impact on mortality. Clin. Infect. Dis. 2017, 64, 711–718. [Google Scholar] [CrossRef] [Green Version]
- Behera, B.; Mathur, P.; Das, A.; Kapil, A.; Gupta, B.; Bhoi, S.; Farooque, K.; Sharma, V.; Misra, M.C. Evaluation of susceptibility testing methods for polymyxin. Int. J. Infect. Dis. 2010, 14, e596–e601. [Google Scholar] [CrossRef] [Green Version]
- Wright, M.S.; Suzuki, Y.; Jones, M.B.; Marshall, S.H.; Rudin, S.D.; van Duin, D.; Kay, K.; Jacobs, M.R.; Bonomo, R.A.; Adams, M.D. Genomic and transcriptomic analyses of colistin-resistant clinical isolates of Klebsiella pneumoniae reveal multiple pathways of resistance. Antimicrob. Agents Chemother. 2015, 59, 536–543. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, S.J.; Ko, K.S. Diverse genetic alterations responsible for post-exposure colistin resistance in populations of the same strain of Klebsiella pneumoniae. Int. J. Antimicrob Agents. 2018, 52, 425–429. [Google Scholar] [CrossRef]
- Pontel, L.B.; Pezza, A.; Soncini, F.C. Copper stress targets the rcs system to induce multiaggregative behavior in a copper-sensitive Salmonella strain. J. Bacteriol. 2010, 192, 6287–6290. [Google Scholar] [CrossRef] [Green Version]
Isolate | ST a | Minimum Inhibitory Concentration(mg/L) b | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
COL | PB | AMP | AZ | CTX | CAZ | CIP | GEN | IMI | P/T | SXT | ||
B0608-134 | 730 | 1 | 2 | 64 | ≤0.06 | ≤0.06 | 1 | ≤0.06 | 1 | 0.125 | 16/4 | 0.06/1.18 |
B0608-134R | 256 | >64 | 64 | ≤0.06 | ≤0.06 | 1 | ≤0.06 | 2 | 0.25 | 16/4 | 0.06/1.18 | |
B0704-039 | 11 | 0.5 | 2 | >64 | >64 | >64 | >64 | >64 | >64 | 1 | >64/4 | 4/76 |
B0704-039R1 | >8192 | >64 | >64 | >64 | >64 | >64 | >64 | >64 | 1 | >64/4 | 4/76 | |
B0704-039R2 | >128 | >64 | >64 | >64 | >64 | >64 | >64 | >64 | 0.5 | >64/4 | 4/76 | |
08-B063 | 23 | 0.5 | 2 | 64 | ≤0.06 | ≤0.06 | 0.5 | ≤0.06 | 0.5 | 0.125 | 8/4 | 0.12/2.37 |
08-B063R | 512 | >64 | >64 | ≤0.06 | ≤0.06 | 0.5 | 0.125 | 0.5 | 0.125 | 16/4 | 0.5/9.5 | |
B0701-068 | 152 | 0.5 | 2 | 64 | ≤0.06 | ≤0.06 | 1 | ≤0.06 | 1 | 0.25 | 16/4 | 0.06/1.18 |
B0701-068R | 1024 | >64 | >64 | ≤0.06 | ≤0.06 | 1 | ≤0.06 | 1 | 0.25 | 16/4 | 0.125/2.37 |
Set | Gene Name | Function | Nucleotide Alteration | Amino Acid Alteration | Fold Change of mRNA Expression |
---|---|---|---|---|---|
B0608-134 versus B0608-134R | Intergenic region between KPN_02065 and KPN_02066 | KPN_02065, putative transport protein KPN_02066, putative response regulator consisting of a CheY-like receiver domain and a winged-helix DNA-binding domain | Insertion of Insertion sequence (IS)5-like element | - | 208.99 ± 48.27-fold increase for KPN_02065 |
4.48 ± 0.1-fold increase for KPN_02066 | |||||
B0704-039 versus B0704-039R1 | Intergenic region between KP1_3468 and KP1_3469 | KP1_3468; conserved hypothetical protein KP1_3469; putative outer membrane | Insertion of IS5-like element | - | 2.51 ± 0.49-fold increase for KP1_3468 |
1.03 ± 0.11 fold increase for KP1_3469 | |||||
B0704-039 versus B0704-039R2 | KP1_3468 | Hypothetical protein | T26A, C108G, A128T | L9Q, S36R, K43I | 7.91 ± 0.31-fold increase |
mgrB | PhoPQ regulatory protein | Insertion of IS5-like element | Frameshift | - | |
B08-063 versus B08-063R | phoQ | Sensor protein PhoQ | A803C | Y268S | 7.49 ± 0.52-fold increase |
12-bp deletion at 341st nucleotide | Deletion of 5 amino acids at position 114 | ||||
KP1_3620 | Hypothetical protein | 1 bp deletion at 51st nucleotide | Premature stop at position 14 | - | |
KP1_0061 | Repressor of galETK operon | T104G | V35G | 2.11 ± 0.35-fold increase | |
B0701-068 versus B0701-068R | KP1_3468 | Hypothetical protein | Insertion of IS5-like element | Frameshift | 0.9 ± 0.14-fold increase |
KPN_02067 | Sensor histidine protein kinase (RstA regulator) | G593T | G198V | 1.36 ± 0.05-fold increase | |
mgrB | PhoPQ regulatory protein | Insertion of IS5-like element | Frameshift | - |
Isolates | Colistin MICs(mg/L) |
---|---|
08-B063 | 0.5 |
08-B063/pBAD33 | 0.5 |
08-B063/pKP1_0061R | 0.5 |
08-B063/pKP1_3620R | 0.125 |
Primer | Sequence (5′→ 3′) | Amplicon Size (bp) | Reference |
---|---|---|---|
Primers for sequencing | |||
134-target1-F | TGAATGCACAAGGTAAAGCCAGG | 500 | This study |
134-target1-R | CCGTCTTCGGCTCTTAAGGTTTT | ||
039-target1-F | GACACAGCCAGCGATGCCAG | 416 | This study |
039-target1-R | TTGTATGATCCATGGCGTGA | ||
063-target1,2-F | ATGCAGGTAATAACCAATCT | 751 | This study |
063-target1,2-R | ATCCCGGAAAACCTGAATAT | ||
063-target3-F | CCATAATAAAAAAAATAATC | 362 | This study |
063-target3-R | GCCCCTCCCCACACATCTTT | ||
063-target4-F | ACGGCCGAGCGCCAGAAACG | 720 | This study |
063-target4-R | TCGCATCCGCATCCGCCAGG | ||
068-target1-F | TATGATGCACACCTGTCGGG | 780 | This study |
068-target1-R | CACTGTGGAATAACACCCCA | ||
068-target2-F | GGCACTGAATAATGCGTAAG | 480 | This study |
068-target2-R | GCCTGAAACAAATCTCTCAG | ||
mgrB-ext-F | CAGCCAGCGATGCCAGATTT | 380 | [5] |
mgrB-ext-R | CCTGGCGTGATTTTGACACGA | ||
Primers for qRT-PCR | |||
RT-KPN_02065-F | CCCCGGGGTGCTATCTCAC | 135 | This study |
RT-KPN_02065-R | CCGCCCAGGATGGCATTTAT | ||
RT-KPN_02066-F | TCGCTGCCATACTGACAGGCT | 148 | This study |
RT-KPN_02066-R | TTCCAGCCATCGTACACGGG | ||
RT-KP1_3468-F | AAAAATTACGGTGGGTTTTACTGA | 109 | This study |
RT-KP1_3468-R | ATGCCGCTGAAAAACTGAAC | ||
RT-KP1_3469-F | TGGATTGGCGTATTATTGAGC | 122 | This study |
RT-KP1_3469-R | TGAACATAAAGTGCGGTGCT | ||
RT-phoQ-F | TGCCAGGGAAGCGGACTAC | 100 | This study |
RT-phoQ-R | GCGGCGGATCAGTGATAAAC | ||
RT-KP1_0061-F | TTATCACCGACTGCAACACC | 138 | This study |
RT-KP1_0061-R | CGACATCGGTCTCAATGATG | ||
RT-KPN-02067-F | GGGAAACCTTAGTGCCAGAGC | 111 | This study |
RT-KPN-02067-R | TGCGCATCCAGCGTCTGTAA | ||
RT-rpoB-F | CGCGTATGTCCGATCGAAA | 100 | This study |
RT-rpoB-F | GCGTCTCAAGGAAGCCATATTC |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, M.; Ko, K.S. Identification of Genetic Alterations Associated with Acquired Colistin Resistance in Klebsiella pneumoniae Isogenic Strains by Whole-Genome Sequencing. Antibiotics 2020, 9, 374. https://doi.org/10.3390/antibiotics9070374
Choi M, Ko KS. Identification of Genetic Alterations Associated with Acquired Colistin Resistance in Klebsiella pneumoniae Isogenic Strains by Whole-Genome Sequencing. Antibiotics. 2020; 9(7):374. https://doi.org/10.3390/antibiotics9070374
Chicago/Turabian StyleChoi, Myeongjin, and Kwan Soo Ko. 2020. "Identification of Genetic Alterations Associated with Acquired Colistin Resistance in Klebsiella pneumoniae Isogenic Strains by Whole-Genome Sequencing" Antibiotics 9, no. 7: 374. https://doi.org/10.3390/antibiotics9070374
APA StyleChoi, M., & Ko, K. S. (2020). Identification of Genetic Alterations Associated with Acquired Colistin Resistance in Klebsiella pneumoniae Isogenic Strains by Whole-Genome Sequencing. Antibiotics, 9(7), 374. https://doi.org/10.3390/antibiotics9070374