Effective Treatment for Uncomplicated Urinary Tract Infections with Oral Fosfomycin, Single Center Four Year Retrospective Study
Abstract
:1. Introduction
2. Results
2.1. Susceptibility of Bacteria Causing UTI to Fosfomycin
2.2. Clinical Efficacy of Fosfomycin
3. Discussion
4. Materials and Methods
4.1. Patient Cohorts and Samples
4.2. Susceptibility Evaluation
4.3. Clinical Efficacy Evaluation
4.4. Statistics
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Frimondt-Møller, N. Fosfomycin. In Kucers’ the Use of Antibiotics, 6th ed.; Grayson, L.M., Ed.; CRC Press: Boca Raton, FL, USA, 2010. [Google Scholar]
- Bader, M.S.; Loeb, M.; Brooks, A.A. An update on the management of urinary tract infections in the era of antimicrobial resistance. Postgrad. Med. 2017, 129, 242–258. [Google Scholar] [CrossRef] [PubMed]
- Grabe, M.; Bartoletti, R.; Bjerklund Johansen, T.E.; Cek, M.; Koves, B.; Naber, K.; Pickard, R.S.; Tenke, P.; Wagenlehner, F.; Wullt, B. Guidelines on Urological Infections. Available online: https://uroweb.org/wp-content/uploads/18-Urological-Infections_LR.pdf (accessed on 12 April 2016).
- Oteo, J.; Bautista, V.; Lara, N.; Cuevas, O.; Arroyo, M.; Fernandez, S.; Lazaro, E.; de Abajo, F.J.; Campos, J.; Spanish, E.-E.-N.S.G. Parallel increase in community use of fosfomycin and resistance to fosfomycin in extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli. J. Antimicrob. Chemother. 2010, 65, 2459–2463. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sastry, S.; Doi, Y. Fosfomycin: Resurgence of an old companion. J. Infect. Chemother. 2016, 22, 273–280. [Google Scholar] [CrossRef] [PubMed]
- Stefaniuk, E.; Suchocka, U.; Bosacka, K.; Hryniewicz, W. Etiology and antibiotic susceptibility of bacterial pathogens responsible for community-acquired urinary tract infections in Poland. Eur. J. Clin. Microbiol. Infect. Dis. 2016, 35, 1363–1369. [Google Scholar] [CrossRef] [Green Version]
- Fajfr, M.; Louda, M.; Paterova, P.; Ryskova, L.; Pacovsky, J.; Kosina, J.; Zemlickova, H.; Brodak, M. The susceptibility to fosfomycin of Gram-negative bacteria isolates from urinary tract infection in the Czech Republic: Data from a unicentric study. BMC Urol. 2017, 17, 33. [Google Scholar] [CrossRef]
- Liu, H.Y.; Lin, H.C.; Lin, Y.C.; Yu, S.H.; Wu, W.H.; Lee, Y.J. Antimicrobial susceptibilities of urinary extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae to fosfomycin and nitrofurantoin in a teaching hospital in Taiwan. J. Microbiol. Immunol. Infect. 2011, 44, 364–368. [Google Scholar] [CrossRef] [Green Version]
- Matthews, P.C.; Barrett, L.K.; Warren, S.; Stoesser, N.; Snelling, M.; Scarborough, M.; Jones, N. Oral fosfomycin for treatment of urinary tract infection: A retrospective cohort study. BMC Infect. Dis. 2016, 16, 556. [Google Scholar] [CrossRef] [Green Version]
- Demir, T.; Buyukguclu, T. Evaluation of the in vitro activity of fosfomycin tromethamine against Gram-negative bacterial strains recovered from community- and hospital-acquired urinary tract infections in Turkey. Int. J. Infect. Dis. 2013, 17, e966–e970. [Google Scholar] [CrossRef] [Green Version]
- Sobel, J.D.; Kaye, D. Urinary tract infection. In Mandell, Douglas and Bennett’s Principle and Practice of Infectious Diseases, 7th ed.; Mandell, G., Bennett, J., Dolin, R., Eds.; Churchill Livingstone: Philadelphia, PA, USA, 2010. [Google Scholar]
- Falagas, M.E.; Kastoris, A.C.; Kapaskelis, A.M.; Karageorgopoulos, D.E. Fosfomycin for the treatment of multidrug-resistant, including extended-spectrum beta-lactamase producing, Enterobacteriaceae infections: A systematic review. Lancet. Infect. Dis. 2010, 10, 43–50. [Google Scholar] [CrossRef]
- Maraki, S.; Samonis, G.; Rafailidis, P.I.; Vouloumanou, E.K.; Mavromanolakis, E.; Falagas, M.E. Susceptibility of urinary tract bacteria to fosfomycin. Antimicrob. Agents. Chemother. 2009, 53, 4508–4510. [Google Scholar] [CrossRef] [Green Version]
- Diez-Aguilar, M.; Canton, R. New microbiological aspects of fosfomycin. Rev. Esp. Quimioter. 2019, 32, 8–18. [Google Scholar] [PubMed]
- Grabein, B.; Graninger, W.; Rodriguez Bano, J.; Dinh, A.; Liesenfeld, D.B. Intravenous fosfomycin-back to the future. Systematic review and meta-analysis of the clinical literature. Clin. Microbiol. Infect. 2017, 23, 363–372. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aghamali, M.; Sedighi, M.; Zahedi Bialvaei, A.; Mohammadzadeh, N.; Abbasian, S.; Ghafouri, Z.; Kouhsari, E. Fosfomycin: Mechanisms and the increasing prevalence of resistance. J. Med. Microbiol. 2019, 68, 11–25. [Google Scholar] [CrossRef] [PubMed]
- Aris, P.; Boroumand, M.A.; Rahbar, M.; Douraghi, M. The Activity of Fosfomycin Against Extended-Spectrum Beta-Lactamase-Producing Isolates of Enterobacteriaceae Recovered from Urinary Tract Infections: A Single-Center Study Over a Period of 12 Years. Microb. Drug. Resist. 2018, 24, 607–612. [Google Scholar] [CrossRef] [PubMed]
- Gajdacs, M.; Urban, E. Comparative Epidemiology and Resistance Trends of Proteae in Urinary Tract Infections of Inpatients and Outpatients: A 10-Year Retrospective Study. Antibiotics 2019, 8, 91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gajdacs, M.; Urban, E. Resistance Trends and Epidemiology of Citrobacter-Enterobacter-Serratia in Urinary Tract Infections of Inpatients and Outpatients (RECESUTI): A 10-Year Survey. Medicina (Kaunas) 2019, 55, 285. [Google Scholar] [CrossRef] [Green Version]
- Peretz, A.; Naamneh, B.; Tkhawkho, L.; Nitzan, O. High Rates of Fosfomycin Resistance in Gram-Negative Urinary Isolates from Israel. Microb. Drug. Resist. 2019, 25, 408–412. [Google Scholar] [CrossRef]
- Neuner, E.A.; Sekeres, J.; Hall, G.S.; van Duin, D. Experience with fosfomycin for treatment of urinary tract infections due to multidrug-resistant organisms. Antimicrob. Agents. Chemother. 2012, 56, 5744–5748. [Google Scholar] [CrossRef] [Green Version]
- Qiao, L.D.; Zheng, B.; Chen, S.; Yang, Y.; Zhang, K.; Guo, H.F.; Yang, B.; Niu, Y.J.; Wang, Y.; Shi, B.K.; et al. Evaluation of three-dose fosfomycin tromethamine in the treatment of patients with urinary tract infections: An uncontrolled, open-label, multicentre study. BMJ Open 2013, 3, e004157. [Google Scholar] [CrossRef]
- Gupta, V.; Rani, H.; Singla, N.; Kaistha, N.; Chander, J. Determination of Extended-Spectrum beta-Lactamases and AmpC Production in Uropathogenic Isolates of Escherichia coli and Susceptibility to Fosfomycin. J. Lab. Physicians. 2013, 5, 90–93. [Google Scholar] [CrossRef]
- Hagiya, H.; Ninagawa, M.; Hasegawa, K.; Terasaka, T.; Kimura, K.; Waseda, K.; Hanayama, Y.; Sendo, T.; Otsuka, F. Fosfomycin for the treatment of prostate infection. Intern. Med. 2014, 53, 2643–2646. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaase, M.; Szabados, F.; Anders, A.; Gatermann, S.G. Fosfomycin susceptibility in carbapenem-resistant Enterobacteriaceae from Germany. J. Clin. Microbiol. 2014, 52, 1893–1897. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perdigao-Neto, L.V.; Oliveira, M.S.; Rizek, C.F.; Carrilho, C.M.; Costa, S.F.; Levin, A.S. Susceptibility of multiresistant gram-negative bacteria to fosfomycin and performance of different susceptibility testing methods. Antimicrob. Agents. Chemother. 2014, 58, 1763–1767. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giancola, S.E.; Mahoney, M.V.; Hogan, M.D.; Raux, B.R.; McCoy, C.; Hirsch, E.B. Assessment of Fosfomycin for Complicated or Multidrug-Resistant Urinary Tract Infections: Patient Characteristics and Outcomes. Chemotherapy 2017, 62, 100–104. [Google Scholar] [CrossRef]
Bacteria | Cohort 1 | Cohort 2 | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
BL (ESBL, AmpC, K1) | iAmpC | FQR | MDR | NO RES | BL (ESBL, AmpC, K1) | iAmpC | FQR | MDR | NO RES | |||||||||||
% | No. | % | No. | % | No. | % | No. | % | No. | % | No. | % | No. | % | No. | % | No. | % | No. | |
Citrobacter spp. | 12.1 | 4 | (0.0) | 0 | 9.1 | 3 | 0.0 | 0 | (78.8) | 26 | 10.5 | 10 | (25.3) | 24 | 12.6 | 12 | 0.0 | 0 | (51.6) | 49 |
Enterobacter spp. | 19.2 | 10 | (0.0) | 0 | 19.2 | 10 | 0.0 | 0 | (61.6) | 32 | 26.9 | 56 | (24.5) | 51 | 14.9 | 31 | 0.0 | 0 | (33.7) | 70 |
Escherichia coli | 5.4 | 37 | 0.0 | 0 | 17.0 | 116 | 0.0 | 0 | 77.6 | 530 | 7.3 | 166 | 0.2 | 4 | 17.2 | 392 | 0.0 | 0 | 75.3 | 1714 |
Klebsiella spp. | 29.0 | 64 | 0.0 | 0 | 37.5 | 83 | 0.0 | 0 | 33.5 | 74 | 30.8 | 252 | 0.4 | 3 | 33.2 | 272 | 0.0 | 0 | 35.6 | 291 |
Pseudomonas spp. | 0.0 | 0 | 0.0 | 0 | (42.7) | 38 | (5.6) | 5 | 51.7 | 46 | 0.0 | 0 | 0.0 | 0 | (21.9) | 66 | (13.3) | 40 | 64.8 | 195 |
Tribus Proteae | 2.1 | 2 | (0.0) | 0 | 27.8 | 27 | 0.0 | 0 | (70.1) | 68 | 4.3 | 21 | (11.6) | 57 | 32.4 | 159 | 0.0 | 0 | (51.7) | 254 |
Bacteria | Cohort 1 | Cohort 2 | |||
---|---|---|---|---|---|
Resistance | Fosfomycin Resistant (%) | Total | Fosfomycin Resistant (%) | Total | |
Escherichia coli | BL | 16.0 | 25 | 8.7 | 161 |
FQR | 0.0 | 43 | 3.8 | 262 | |
NO | 4.0 | 273 | 2.8 | 1702 | |
Escherichia coli in total | ALL | 4.4 | 3.4 | ||
Klebsiella species | BL | (87.0) | 54 | (95.2) | 165 |
FQR | 83.3 | 12 | 90.6 | 32 | |
NO | 74.5 | 47 | 79.6 | 147 | |
Klebsiella species in total | ALL | 81.4 | 88.1 | ||
Enterobacter species | BL | 85.7 | 7 | 81.0 | 21 |
FQR | 0.0 | 0 | 100.0 | 1 | |
iAmpC | 0.0 | 0 | 53.8 | 13 | |
NO | (45.6) | 22 | (76.6) | 47 | |
Enterobacter species in total | ALL | (55.2) | (74.4) |
Demographic Characteristics of Patients | |||
---|---|---|---|
Variables | Parameters | % | |
Gender | Male | 77 | 25.7 |
Female | 223 | 74.3 | |
Age (years) | Average | 51 years | Range 16–93 years |
UTI type * | Uncomplicated | 77 | 32.9 |
Recurrent | 110 | 47.0 | |
Complicated | 47 | 20.1 |
Relapse (in %) | Total | ||||
---|---|---|---|---|---|
UTI Type | No Relapse/Fully Cured | No Effect | Relapse ≤2 M | Relapse 2–12 M | |
Complicated | 38.1 | 33.3 | 16.7 | 11.9 | 42 |
Recurrent | 29.6 | 23.2 | 28.7 | 18.5 | 108 |
Uncomplicated | (77.8) | 11.1 | (5.6) | 5.6 | 36 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fajfr, M.; Balik, M.; Cermakova, E.; Bostik, P. Effective Treatment for Uncomplicated Urinary Tract Infections with Oral Fosfomycin, Single Center Four Year Retrospective Study. Antibiotics 2020, 9, 511. https://doi.org/10.3390/antibiotics9080511
Fajfr M, Balik M, Cermakova E, Bostik P. Effective Treatment for Uncomplicated Urinary Tract Infections with Oral Fosfomycin, Single Center Four Year Retrospective Study. Antibiotics. 2020; 9(8):511. https://doi.org/10.3390/antibiotics9080511
Chicago/Turabian StyleFajfr, Miroslav, Michal Balik, Eva Cermakova, and Pavel Bostik. 2020. "Effective Treatment for Uncomplicated Urinary Tract Infections with Oral Fosfomycin, Single Center Four Year Retrospective Study" Antibiotics 9, no. 8: 511. https://doi.org/10.3390/antibiotics9080511
APA StyleFajfr, M., Balik, M., Cermakova, E., & Bostik, P. (2020). Effective Treatment for Uncomplicated Urinary Tract Infections with Oral Fosfomycin, Single Center Four Year Retrospective Study. Antibiotics, 9(8), 511. https://doi.org/10.3390/antibiotics9080511