Dyes Amount and Light Scattering Influence on the Photocurrent Enhancement of Titanium Dioxide Hierarchically Structured Photoanodes for Dye-Sensitized Solar Cells
Abstract
:1. Introduction
2. Experimental Design
2.1. Preparation of a Hierarchically Structured TiO2 Particle Paste
2.2. Fabrication of the DSSCs
2.3. Characterization and Measurement
3. Results and Discussion
3.1. Morphologies of the TiO2 Films
3.2. Optical Properties of TiO2 Films and Photoanodes
3.3. Performances of the DSSCs
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- O’Regan, B.; Grätzel, M. A low-cost, high-efficiency solar cell based on dye-seneitized colloidal TiO2 films. Nature 1991, 353, 737–740. [Google Scholar] [CrossRef]
- Grätzel, M. Dye-sensitized solar cells. J. Photochem. Photobiol. 2003, 4, 145–153. [Google Scholar] [CrossRef]
- Lee, K.-M.; Suryanarayanan, V.; Ho, K.-C. A study on the electron transport properties of TiO2 electrodes in dye-sensitized solar cells. Sol. Energy Mater. Sol. Cells 2007, 91, 1416–1420. [Google Scholar] [CrossRef]
- Hu, L.; Dai, S.; Weng, J.; Xiao, S.; Sui, Y.; Huang, Y.; Chen, S.; Kong, F.; Pan, X.; Liang, L.; et al. Microstructure design of nanoporous TiO2 photoelectrodes for dye-sensitized solar cell modules. J. Phys. Chem. 2007, 111, 358–362. [Google Scholar] [CrossRef] [PubMed]
- Varghese, O.K.; Paulose, M.; Grimes, C.A. Long vertically aligned titania nanotubes on transparent conducting oxide for highly efficient solar cells. Nat. Nanotechnol. 2009, 4, 592–597. [Google Scholar] [CrossRef] [PubMed]
- Qian, J.; Liu, P.; Xiao, Y.; Jiang, Y.; Cao, U.; Ai, X.; Yang, H. TiO2-coated multilayered SnO2 hollow microspheres for dye-sensitized solar cells. Adv. Mater. 2009, 21, 3663–3667. [Google Scholar] [CrossRef]
- Yu, H.; Zhang, S.; Zhao, H.; Xue, B.; Liu, P.; Will, G. High-performance TiO2 photoanode with an efficient electron transport network for dye-sensitized solar cells. J. Phys. Chem. 2009, 113, 16277–16282. [Google Scholar] [CrossRef]
- Grätzel, M. Recent advances in sensitized mesoscopic solar cells. Acc. Chem. Res. 2009, 42, 1788–1798. [Google Scholar] [CrossRef]
- Yu, J.; Fan, J.; Zhao, L. Dye-sensitized solar cells based on hollow anatase TiO2 spheres prepared by self-transformation method. Electrochim. Acta 2010, 55, 597–602. [Google Scholar] [CrossRef]
- Krašovec, U.O.; Berginc, M.; Hočevar, M.; Topič, M. Unique TiO2 paste for high efficiency dye-sensitized solar cells. Sol. Energy Mater. Sol. Cells 2009, 93, 379–381. [Google Scholar] [CrossRef]
- Wang, Z.; Kawauchi, H.; Kashima, T.; Arakawa, H. Significant influence of TiO2 photoelectrode morphology on the energy conversion efficiency of N719 dye-sensitized solar cell. Coord. Chem. Rev. 2004, 248, 1381–1389. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhai, J.; Tan, S.; Wang, L.; Jiang, L.; Zhu, D. TiO2 micro/nano-composite structured electrodes for quasi-solid-state dye-sensitized solar cells. Nanotechnology 2006, 17, 2090–2097. [Google Scholar] [CrossRef]
- Kim, Y.J.; Lee, M.H.; Kim, H.J.; Lim, G.; Choi, Y.S.; Park, N.; Kim, K.; Lee, W.I. Formation of highly efficient dye-sensitized solar cells by hierarchical pore generation with nanoporous TiO2 spheres. Adv. Mater. 2009, 21, 3668–3673. [Google Scholar] [CrossRef]
- Sedghi, A.; Miankushki, H.N. Influence of TiO2 electrode properties on performance of dye sensitized solar cells. Int. J. Electrochem. Sci. 2012, 7, 12078–12089. [Google Scholar]
- Sahin, F.E.; Yılmaz, M. High concentration photovoltaics (HCPV) with diffractive secondary optical elements. Photonics 2019, 6, 68. [Google Scholar] [CrossRef] [Green Version]
- Ferber, J.; Luther, J. Computer simulations of light scattering and absorption in dye-sensitized solar cells. Sol. Energy Mater. Sol. Cells 1998, 54, 265–275. [Google Scholar] [CrossRef]
- Hore, S.; Vetter, C.; Kern, R.; Smit, H.; Hinsch, A. Influence of scattering layers on efficiency of dye-sensitized solar cells. Sol. Energy Mater. Sol. Cells 2006, 90, 1176–1188. [Google Scholar] [CrossRef]
- Nunomura, S.; Minowa, A.; Sai, H.; Knodo, M. Mie scattering enhanced near-infrared light response of thin-film silicon solar cells. Appl. Phys. Lett. 2010, 97, 063507. [Google Scholar] [CrossRef]
- Szygula, A.; Ruiz, M.; Sastre, A.; Guibal, E. Removal of an anionic reactive dye by chitosan and its regeneration. In Proceedings of the 2nd International Conference on Waste Management, Water Pollution, Air Pollution, Indoor Climate (WWAI′08), Corfu, Greece, 26–28 October 2008. [Google Scholar]
- Chen, A.-H.; Huang, Y.-Y. Adsorption of Remazol Black 5 from aqueous solution by the template crosslinked-chitosans. J. Hazard. Mater. 2010, 177, 668–675. [Google Scholar] [CrossRef]
- Tian, Z.; Tian, H.; Wang, X.; Yuan, S.; Zhang, J.; Zhang, X.; Yu, T.; Zou, Z. Multilayer structure with gradual increasing porosity for dye-sensitized solar cells. Appl. Phys. Lett. 2009, 94, 031905. [Google Scholar] [CrossRef]
- Son, M.K.; Seo, H.; Kim, S.K.; Hong, N.Y.; Kim, B.M.; Park, S.; Prabakar, K.; Kim, H.J. Analysis on the light-scattering effect in dye-sensitized solar cell according to the TiO2 structural differences. Int. J. Photoenergy 2012, 2012, 480929. [Google Scholar] [CrossRef] [Green Version]
Sample | Adsorbed Dye (×10−8 mol/cm2) | Scattering Effect (525 nm) a | Jsc (mA/cm2) | Voc (V) | FF | η (%) |
---|---|---|---|---|---|---|
STD | 6.35 | weakest | 10.63 | 0.58 | 0.69 | 4.08 |
Device A | 6.46 | weak | 11.65 | 0.59 | 0.65 | 4.47 |
Device B | 5.92 | middle | 9.41 | 0.59 | 0.65 | 3.64 |
Device C | 5.56 | strong | 9.49 | 0.57 | 0.68 | 3.71 |
Device D | 5.81 | strongest | 9.50 | 0.58 | 0.66 | 3.79 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, W.-Y.; Hsieh, T.-L. Dyes Amount and Light Scattering Influence on the Photocurrent Enhancement of Titanium Dioxide Hierarchically Structured Photoanodes for Dye-Sensitized Solar Cells. Coatings 2020, 10, 13. https://doi.org/10.3390/coatings10010013
Huang W-Y, Hsieh T-L. Dyes Amount and Light Scattering Influence on the Photocurrent Enhancement of Titanium Dioxide Hierarchically Structured Photoanodes for Dye-Sensitized Solar Cells. Coatings. 2020; 10(1):13. https://doi.org/10.3390/coatings10010013
Chicago/Turabian StyleHuang, Wen-Yao, and Tung-Li Hsieh. 2020. "Dyes Amount and Light Scattering Influence on the Photocurrent Enhancement of Titanium Dioxide Hierarchically Structured Photoanodes for Dye-Sensitized Solar Cells" Coatings 10, no. 1: 13. https://doi.org/10.3390/coatings10010013