Growth and Characterization of Cu2MnSnS4 Thin Films Synthesized by Spray Pyrolysis under Air Atmosphere
Abstract
:1. Introduction
2. Materials and Methods
2.1. Elaboration
2.2. Characterization
3. Results and Discussion
3.1. Structural Characterization
3.2. Chemical Composition Characterization
3.3. Optical Characterization
3.4. Electrical Characterization
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Parisi, A.; Pernice, R.; Rocca, V.; Curcio, L.; Stivala, S.; Cino, A.C.; Cipriani, G.; Di Dio, V.; Galluzzo, G.R.; Miceli, R.; et al. Graded Carrier Concentration Absorber Profile for High Efficiency CIGS Solar Cells. Int. J. Photoenergy 2015, 2015, 1–9. [Google Scholar] [CrossRef]
- Fillon, R. Etude des Propriétés Electroniques de Couches Minces de CZTSSe. Ph.D. Thesis, Université de Grenoble, Grenoble, French, October 2016. [Google Scholar]
- Zhang, X.; Bao, N.; Ramasamy, K.; Wang, Y.-H.A.; Wang, Y.; Lin, B.; Gupta, A. Crystal phase-controlled synthesis of Cu2FeSnS4 nanocrystals with a band gap of around 1.5 eV. Chem. Commun. 2012, 48, 4956. [Google Scholar] [CrossRef] [PubMed]
- Le Donne, A.; Trifiletti, V.; Binetti, S. New Earth-Abundant Thin Film Solar Cells Based on Chalcogenides. Front. Chem. 2019, 7, 297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Evstigneeva, T.L.; Kabalov, Y.K. Crystal structure of the cubic modification of Cu2FeSnS4. Crystallogr. Rep. 2001, 46, 368–372. [Google Scholar] [CrossRef]
- Fries, T.; Shapira, Y.; Palacio, F.; Moron, M.C.; McIntyre, G.J.; Kershaw, R.; Wold, A.; McNiff, E.J. Magnetic ordering of the antiferromagnet Cu2MnSnS4 from magnetization and neutron-scattering measurements. Phys. Rev. B 1997, 56, 5424–5431. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, A.; Biswas, A.; Thangavel, R.; Udayabhanu, G. Photo-electrochemical property and electronic band structure of kesteritecopper chalcogenides Cu2-II-Sn-S4 (II = Fe, Co, Ni) thin films. RSC Adv. 2016, 6, 96025–96034. [Google Scholar] [CrossRef]
- Chatterjee, S.; Pal, A.J. A solution approach to p-type Cu2FeSnS4 thin-films and pn-junction solar cells: Role of electron selective materials on their performance. Sol. Energy Mater. Sol. Cells 2017, 160, 233–240. [Google Scholar] [CrossRef]
- Zandi, S.; Saxena, P.; Razaghi, M.; Gorji, N.E. Simulation of CZTSSe Thin-Film Solar Cells in COMSOL: Three-Dimensional Optical, Electrical, and Thermal Models. IEEE J. Photovolt. 2020, 10, 1503–1507. [Google Scholar] [CrossRef]
- Siebentritt, S. Why are kesterite solar cells not 20% efficient? Thin Solid Film. 2013, 535, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Ozel, F. Earth-abundant quaternary semiconductor Cu2MSnS4 (M = Fe, Co, Ni and Mn) nanofibers: Fabrication, characterization and band gap arrangement. J. Alloy. Compd. 2016, 657, 157–162. [Google Scholar] [CrossRef]
- Cui, Y.; Deng, R.; Wang, G.; Pan, D. A general strategy for synthesis of quaternary semiconductor Cu2MSnS4 (M = Co2+, Fe2+, Ni2+, Mn2+) nanocrystals. J. Mater. Chem. 2012, 22, 23136–23140. [Google Scholar] [CrossRef]
- Chen, L.; Deng, H.; Tao, J.; Cao, H.; Sun, L.; Yang, P.; Chu, J. Strategic improvement of Cu2MnSnS4 films by two distinct post-annealing processes for constructing thin film solar cells. Acta Mater. 2016, 109, 1–7. [Google Scholar] [CrossRef]
- Yu, J.; Deng, H.; Chen, L.; Tao, J.; Zhang, Q.; Guo, B.; Sun, L.; Yang, P.; Zheng, X.; Chu, J. Improvement performance of two-step electrodepositing Cu2MnSnS4 thin film solar cells by tuning Cu-Sn alloy layer deposition time. Mater. Chem. Phys. 2018, 211, 382–388. [Google Scholar] [CrossRef]
- Woodyard, J.R.; Landis, G.A. Radiation resistance of thin-film solar cells for space photovoltaic power. Sol. Cells 1991, 31, 297–329. [Google Scholar] [CrossRef] [Green Version]
- Nie, L.; Yang, J.; Yang, D.; Zhang, W. Effect of substrate temperature on growth and properties of Cu2MnSnS4 thin films prepared by chemical spray pyrolysis. J. Mater. Sci. Mater. Electron. 2019, 30, 3760–3766. [Google Scholar] [CrossRef]
- Prabhakar, R.R.; Zhenghua, S.; Xin, Z.; Baikie, T.; Woei, L.S.; Shukla, S.; Batabyal, S.K.; Gunawan, O.; Wong, L.H. Photovoltaic effect in earth abundant solution processed Cu2MnSnS4 and Cu2MnSn(S,Se)4 thin films. Sol. Energy Mater. Sol. Cells 2016, 157, 867–873. [Google Scholar] [CrossRef]
- Chen, L.L.; Deng, H.M.; Zhang, K.Z.; Huang, L.; Liu, J.; Sun, L.; Yang, P.X.; Chu, J.H. Structural and Optical Properties of Cu2MnSnS4 Thin Film Fabricated by Sol-Gel Technique. Mater. Sci. Forum 2015, 814, 39–43. [Google Scholar] [CrossRef]
- Chen, L.; Deng, H.; Tao, J.; Zhou, W.; Sun, L.; Yue, F.; Yang, P.; Chu, J. Influence of annealing temperature on structural and optical properties of Cu2MnSnS4 thin films fabricated by sol–gel technique. J. Alloy. Compd. 2015, 640, 23–28. [Google Scholar] [CrossRef]
- Chen, L.; Deng, H.; Tao, J.; Cao, H.; Huang, L.; Sun, L.; Yang, P.; Chu, J. Synthesis and characterization of earth-abundant Cu2MnSnS4 thin films using a non-toxic solution-based technique. RSC Adv. 2015, 5, 84295–84302. [Google Scholar] [CrossRef]
- Marchionna, S.; Le Donne, A.; Merlini, M.; Binetti, S.; Acciarri, M.; Cernuschi, F. Growth of Cu2MnSnS4 PV absorbers by sulfurization of evaporated precursors. J. Alloy. Compd. 2017, 693, 95–102. [Google Scholar] [CrossRef]
- Le Donne, A.; Marchionna, S.; Acciarri, M.; Cernuschi, F.; Binetti, S. Relevant efficiency enhancement of emerging Cu2MnSnS4 thin film solar cells by low temperature annealing. Sol. Energy 2017, 149, 125–131. [Google Scholar] [CrossRef]
- Yu, J.; Deng, H.; Tao, J.; Chen, L.; Cao, H.; Sun, L.; Yang, P.; Chu, J. Synthesis of Cu2MnSnS4 thin film deposited on seeded fluorine doped tin oxide substrate via a green and low-cost electrodeposition method. Mater. Lett. 2017, 191, 186–188. [Google Scholar] [CrossRef]
- Perednis, D.; Gauckler, L.J. Thin Film Deposition Using Spray Pyrolysis. J. Electroceramics 2005, 14, 103–111. [Google Scholar] [CrossRef]
- Yu, J.; Deng, H.; Zhang, Q.; Tao, J.; Sun, L.; Yang, P.; Chu, J. The role of sulfurization temperature on the morphological, structural and optical properties of electroplated Cu2MnSnS4 absorbers for photovoltaics. Mater. Lett. 2018, 233, 111–114. [Google Scholar] [CrossRef]
- Prabhakar, R.R.; Loc, N.H.; Kumar, M.H.; Boix, P.P.; Juan, S.; John, R.A.; Batabyal, S.K.; Wong, L.H. Facile Water-based Spray Pyrolysis of Earth-Abundant Cu2FeSnS4 Thin Films as an Efficient Counter Electrode in Dye-Sensitized Solar Cells. ACS Appl. Mater. Interfaces 2014, 6, 17661–17667. [Google Scholar] [CrossRef]
- Aboulfadl, H.; Keller, J.; Larsen, J.; Thuvander, M.; Riekehr, L.; Edoff, M.; Platzer-Björkman, C. Microstructural Characterization of Sulfurization Effects in Cu(In,Ga)Se2 Thin Film Solar Cells. Microsc. Microanal. 2019, 25, 532–538. [Google Scholar] [CrossRef]
- Neveux, L.; Chiche, D.; Pérez-Pellitero, J.; Favergeon, L.; Gay, A.-S.; Pijolat, M. New insight into the ZnO sulfidation reaction: Mechanism and kinetics modeling of the ZnS outward growth. Phys. Chem. Chem. Phys. 2013, 15, 1532–1545. [Google Scholar] [CrossRef] [Green Version]
- Van Der Vlies, A.J.; Kishan, G.; Niemantsverdriet, J.; Prins, A.R.; Weber, T. Basic Reaction Steps in the Sulfidation of Crystalline Tungsten Oxides. J. Phys. Chem. B 2002, 106, 3449–3457. [Google Scholar] [CrossRef]
- Hassanien, A.S.; El Radaf, I.M. Optical characterizations of quaternary Cu2MnSnS4 thin films: Novel synthesis process of film samples by spray pyrolysis technique. Phys. B: Condens. Matter 2020, 585, 412110. [Google Scholar] [CrossRef]
- Maldar, P.; Gaikwad, M.; Mane, A.; Nikam, S.; Desai, S.; Giri, S.; Sarkar, A.; Moholkar, A. Fabrication of Cu2CoSnS4 thin films by a facile spray pyrolysis for photovoltaic application. Sol. Energy 2017, 158, 89–99. [Google Scholar] [CrossRef]
- Miller, S.A.; Gorai, P.; Aydemir, U.; Mason, T.O.; Stevanović, V.; Toberer, E.S.; Snyder, G.J. SnO as a potential oxide thermoelectric candidate. J. Mater. Chem. C 2017, 5, 8854–8861. [Google Scholar] [CrossRef]
- Bikowski, A.; Holder, A.; Peng, H.; Siol, S.; Norman, A.G.; Lany, S.; Zakutayev, A. Synthesis and Characterization of (Sn,Zn)O Alloys. Chem. Mater. 2016, 28, 7765–7772. [Google Scholar] [CrossRef]
- Kacher, J.; Landon, C.; Adams, B.L.; Fullwood, D. Bragg’s Law diffraction simulations for electron backscatter diffraction analysis. Ultramicroscopy 2009, 109, 1148–1156. [Google Scholar] [CrossRef] [PubMed]
- Barret, C.; Massalki, T.B. Structure of Metals; Pergamon Press: Oxford, UK, 1980. [Google Scholar] [CrossRef]
- Jebali, A.; Khemiri, N.; Kanzari, M. The effect of annealing in N2 atmosphere on the physical properties of SnSb4S7 thin films. J. Alloy. Compd. 2016, 673, 38–46. [Google Scholar] [CrossRef]
- Williamson, G.K.; Smallman, R.E., III. Dislocation densities in some annealed and cold-worked metals from measurements on the X-ray debye-scherrer spectrum. Philos. Mag. 1956, 1, 34–46. [Google Scholar] [CrossRef]
- Khadka, D.B.; Kim, J. Structural, optical and electrical properties of Cu2FeSnX4 (X = S, Se) thin films prepared by chemical spray pyrolysis. J. Alloy. Compd. 2015, 638, 103–108. [Google Scholar] [CrossRef]
- Milovzorov, D.; Ali, A.; Inokuma, T.; Kurata, Y.; Suzuki, T.; Hasegawa, S. Optical properties of silicon nanocrystallites in polycrystalline silicon films prepared at low temperature by plasma-enhanced chemical vapor deposition. Thin Solid Film. 2001, 382, 47–55. [Google Scholar] [CrossRef]
- Davis, E.A.; Mott, N.F. Conduction in non-crystalline systems V. Conductivity, optical absorption and photoconductivity in amorphous semiconductors. Philos. Mag. 1970, 22, 0903–0922. [Google Scholar] [CrossRef]
- Dridi, S.; Bitri, N.; Abaab, M. Synthesis of quaternary Cu2NiSnS4 thin films as a solar energy material prepared through «spray» technique. Mater. Lett. 2017, 204, 61–64. [Google Scholar] [CrossRef]
- Adelifard, M. Preparation and characterization of Cu2FeSnS4 quaternary semiconductor thin films via the spray pyrolysis technique for photovoltaic applications. J. Anal. Appl. Pyrolysis 2016, 122, 209–215. [Google Scholar] [CrossRef]
- Chen, L.; Deng, H.; Cui, J.; Tao, J.; Zhou, W.; Cao, H.; Sun, L.; Yang, P.; Chu, J. Composition dependence of the structure and optical properties of Cu2MnxZn1−xSnS4 thin films. J. Alloy. Compd. 2015, 627, 388–392. [Google Scholar] [CrossRef]
- Xie, Z.; Liu, X.; Zhan, P.; Wang, W.; Zhang, Z. Tuning the optical bandgap of TiO2-TiN composite films as photocatalyst in the visible light. AIP Adv. 2013, 3, 062129. [Google Scholar] [CrossRef]
- Nemade, K.; Waghuley, S. Band gap engineering of CuS nanoparticles for artificial photosynthesis. Mater. Sci. Semicond. Process. 2015, 39, 781–785. [Google Scholar] [CrossRef]
- Peng, H.; Bikowski, A.; Zakutayev, A.; Lany, S. Pathway to oxide photovoltaics via band-structure engineering of SnO. APL Mater. 2016, 4, 106103. [Google Scholar] [CrossRef]
- Murali, D.S.; Kumar, S.; Choudhary, R.J.; Wadikar, A.D.; Jain, M.K.; Subrahmanyam, A. Synthesis of Cu2O from CuO thin films: Optical and electrical properties. AIP Adv. 2015, 5, 047143. [Google Scholar] [CrossRef]
- Al-Ghamdi, A.A.; Khedr, M.; Ansari, M.S.; Hasan, P.; Abdel-Wahab, M.S.; Farghali, A. RF sputtered CuO thin films: Structural, optical and photo-catalytic behavior. Phys. E Low-Dimens. Syst. Nanostruct. 2016, 81, 83–90. [Google Scholar] [CrossRef]
- Chen, S.; Walsh, A.; Yang, J.-H.; Gong, X.G.; Sun, L.; Yang, P.-X.; Chu, J.-H.; Wei, S.-H. Compositional dependence of structural and electronic properties of Cu2ZnSn(S,Se)4 alloys for thin film solar cells. Phys. Rev. B 2011, 83, 125201. [Google Scholar] [CrossRef] [Green Version]
- Valladares, L.D.L.S.; Salinas, D.H.; Dominguez, A.B.; Najarro, D.A.; Khondaker, S.I.; Mitrelias, T.; Barnes, C.H.W.; Aguiar, J.A.; Majima, Y. Crystallization and electrical resistivity of Cu2O and CuO obtained by thermal oxidation of Cu thin films on SiO2/Si substrates. Thin Solid Film. 2012, 520, 6368–6374. [Google Scholar] [CrossRef]
- Figueiredo, V.; Elangovan, E.; Goncalves, G.; Barquinha, P.; Pereira, L.; Franco, N.; Alves, E.; Martins, R.; Fortunato, E. Effect of post-annealing on the properties of copper oxide thin films obtained from the oxidation of evaporated metallic copper. Appl. Surf. Sci. 2008, 254, 3949–3954. [Google Scholar] [CrossRef]
- Gadallah, A.-S.; Salim, M.; Atwee, T.; Ghander, A. Effect of Al doping on structural, morphological, optical, and electrical properties of Cu2ZnSnS4 thin films prepared by sol-gel spin coating. Optik 2018, 159, 275–282. [Google Scholar] [CrossRef]
- Horwat, D.; Dehmas, M.; Aubry, E.; Zollinger, J.; Migot, S.; Pierson, J. Properties of nanocrystalline and nanocomposite WxZr1−x thin films deposited by co-sputtering. Intermet. 2009, 17, 421–426. [Google Scholar] [CrossRef]
Ts (°C) | FWHM of (112) Peak (Degree) | Interplanar Spacing of (112) (Å) | Lattice Constant a (Å) | Lattice Constant c (Å) | Crystallite Size D (nm) | ε (10−1) | δ (10−2 nm−2) | ||
---|---|---|---|---|---|---|---|---|---|
280 | 1.508 | 3.13 | 5.49 | 10.72 | 0.97 | 5.45 | 1.48 | 3.36 | |
320 | 1.211 | 3.09 | 5.48 | 10.74 | 0.97 | 6.79 | 1.17 | 2.16 | |
360 | 0.684 | 3.09 | 5.44 | 10.55 | 0.96 | 12.05 | 0.66 | 0.68 |
Ts (°C) | Composition Ratios | ||
---|---|---|---|
Cu/(Sn + Mn) | Mn/Sn | S/Metals | |
280 | 0.95 | 0.97 | 0.76 |
320 | 1.05 | 1.22 | 0.75 |
360 | 1.04 | 1.18 | 0.54 |
400 | 1.09 | 1.05 | 0.29 |
Ts (°C) | R (Ω) | Resistivity (Ω·cm) |
---|---|---|
280 | 2.92 × 103 | 3.38 |
320 | 9.91 × 103 | 3.33 |
360 | 1.99 × 103 | 1.14 |
400 | 1.58 × 108 | 9.53 × 104 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dridi, S.; Aubry, E.; Bitri, N.; Chaabouni, F.; Briois, P. Growth and Characterization of Cu2MnSnS4 Thin Films Synthesized by Spray Pyrolysis under Air Atmosphere. Coatings 2020, 10, 963. https://doi.org/10.3390/coatings10100963
Dridi S, Aubry E, Bitri N, Chaabouni F, Briois P. Growth and Characterization of Cu2MnSnS4 Thin Films Synthesized by Spray Pyrolysis under Air Atmosphere. Coatings. 2020; 10(10):963. https://doi.org/10.3390/coatings10100963
Chicago/Turabian StyleDridi, Sarra, Eric Aubry, Nabila Bitri, Fatma Chaabouni, and Pascal Briois. 2020. "Growth and Characterization of Cu2MnSnS4 Thin Films Synthesized by Spray Pyrolysis under Air Atmosphere" Coatings 10, no. 10: 963. https://doi.org/10.3390/coatings10100963
APA StyleDridi, S., Aubry, E., Bitri, N., Chaabouni, F., & Briois, P. (2020). Growth and Characterization of Cu2MnSnS4 Thin Films Synthesized by Spray Pyrolysis under Air Atmosphere. Coatings, 10(10), 963. https://doi.org/10.3390/coatings10100963