Wavelength-Selective Coatings on Glass with High Hardness and Damage Resistance
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Design Strategy 1: Buried Antireflective Layers, Exposed Wavelength-Selective Layers
3.2. Design Strategy 2: Buried Wavelength-Selective Layers, Single Exposed Antireflective Layer
4. Discussion
5. Conclusions
6. Patents
- Bellman, R.A., Hart, S.D., Koch, K.W., and Paulson, C.A. Low-color scratch-resistant articles with a multilayer optical film. U.S. Patent 9,079,802, 2015.
- Hart, S.D., Koch, K.W., Paulson, C.A., and Price, J.J. Durable and scratch-resistant anti-reflective articles. U.S. Patent 9,335,444, 2016.
- Hart, S.D., Koch, K.W., Kosik Williams, C.A., Lin, L., Paulson, C.A., and Price, J.J. Reflective, colored, or color-shifting scratch resistant coatings and articles. U.S. Patent 10,162,084, 2018.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Design | WSC- Red-1 | WSC- Pink-1 | WSC- Green-1 | WSC- Blue-1 | WSC- Silver-1 | ||
---|---|---|---|---|---|---|---|
Layer | Material | Refractive Index at 550 nm | Thickness (nm) | Thickness (nm) | Thickness (nm) | Thickness (nm) | Thickness (nm) |
Substrate | Glass | 1.51 | N/A | N/A | N/A | N/A | N/A |
1 | SiOxNy | 1.95 | 8.6 | 8.3 | 8.3 | 8.1 | 8.2 |
2 | SiO2 | 1.48 | 52.3 | 52.5 | 52.4 | 51.8 | 51.7 |
3 | SiOxNy | 1.95 | 25.5 | 25.1 | 25.0 | 25.1 | 24.7 |
4 | SiO2 | 1.48 | 30.3 | 30.2 | 30.2 | 29.9 | 29.9 |
5 | SiOxNy | 1.95 | 44.0 | 43.9 | 43.7 | 43.3 | 42.8 |
6 | SiO2 | 1.48 | 8.7 | 8.7 | 8.8 | 8.5 | 8.7 |
7 | SiOxNy | 1.95 | 2011 | 2021 | 2019 | 1998 | 2020 |
8 | SiO2 | 1.48 | 149.2 | 99.7 | 271.6 | 268.9 | 201.1 |
9 | SiNx | 2.01 | 92.2 | 102.9 | 66.0 | 58.1 | 189.2 |
10 | SiO2 | 1.48 | 112.8 | 61.6 | 20.6 | 81.6 | 87.7 |
11 | SiNx | 2.01 | 103.3 | 129.8 | 112.1 | 30.4 | 59.7 |
12 | SiO2 | 1.48 | 24.3 | 26.9 | 29.4 | 25.7 | 25.3 |
Medium | Air | 1 | N/A | N/A | N/A | N/A | N/A |
Design | WSC- Silver-2-B | ||
---|---|---|---|
Layer | Material | Refractive Index at 550 nm | Thickness (nm) |
Substrate | Glass | 1.51 | N/A |
1 | SiOxNy | 1.95 | 107.2 |
2 | SiO2 | 1.48 | 14.8 |
3 | SiOxNy | 1.95 | 58.0 |
4 | SiO2 | 1.48 | 24.7 |
5 | SiOxNy | 1.95 | 9.9 |
6 | SiO2 | 1.48 | 120.3 |
7 | SiOxNy | 1.95 | 58.4 |
8 | SiO2 | 1.48 | 101.7 |
9 | SiOxNy | 1.95 | 57.6 |
10 | SiO2 | 1.48 | 83.8 |
11 | SiOxNy | 1.95 | 62.9 |
12 | SiO2 | 1.48 | 94.8 |
13 | SiOxNy | 1.95 | 145.0 |
14 | SiO2 | 1.48 | 78.6 |
15 | SiOxNy | 1.95 | 61.4 |
16 | SiO2 | 1.48 | 151.8 |
17 | SiOxNy | 1.95 | 85.3 |
18 | SiO2 | 1.48 | 130.0 |
19 | SiOxNy | 1.95 | 98.3 |
20 | SiO2 | 1.48 | 179.5 |
21 | SiOxNy | 1.95 | 2005 |
22 | SiO2 | 1.48 | 133.3 |
Medium | Air | 1 | N/A |
Design | WSC- Blue-2-B | WSC- Pink-2-B | WSC- Silver-3-B | ||
---|---|---|---|---|---|
Layer | Material | Refractive Index at 550 nm | Thickness (nm) | Thickness (nm) | Thickness (nm) |
Substrate | Glass | 1.51 | N/A | N/A | N/A |
1 | SiO2 | 1.48 | 25.0 | 25.0 | 25.0 |
2 | SiNx | 2.01 | 16.1 | 106.1 | 92.2 |
3 | SiO2 | 1.48 | 74.0 | 120.7 | 102.7 |
4 | SiNx | 2.01 | 70.0 | 88.4 | 121.2 |
5 | SiO2 | 1.48 | 62.9 | 123.6 | 75.1 |
6 | SiNx | 2.01 | 77.7 | 93.8 | 62.8 |
7 | SiO2 | 1.48 | 61.1 | 127.1 | 95.0 |
8 | SiNx | 2.01 | 71.8 | 100.6 | 177.1 |
9 | SiO2 | 1.48 | 62.6 | 134.1 | 108.5 |
10 | SiNx | 2.01 | 2029 | 2035 | 2026 |
11 | SiO2 | 1.48 | 79.2 | 106.8 | 93.8 |
Medium | Air | 1 | N/A | N/A | N/A |
References
- Macleod, H.A. Thin-Film Optical Filters, 5th ed.; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Baumeister, P.W. Methods of altering the characteristics of a multilayer stack. J. Opt. Soc. Am. A 1962, 52, 1149–1152. [Google Scholar] [CrossRef]
- Southwell, W.H. Coating design using very thin high-and low-index layers. Appl. Opt. 1985, 24, 457–460. [Google Scholar] [CrossRef] [PubMed]
- Raut, H.K.; Ganesh, V.A.; Nair, A.S.; Ramakrishna, S. Antireflective coatings: A critical, in-depth review. Energy Environ. Sci. 2011, 4, 3779–3804. [Google Scholar] [CrossRef]
- Aiken, D.J. High performance anti-reflection coatings for broadband multi-junction solar cells. Sol. Energy Mater. Sol. Cells. 2000, 64, 393–404. [Google Scholar] [CrossRef] [Green Version]
- Fink, Y.; Winn, J.N.; Fan, S.; Chen, C.; Michel, J.; Joannopoulos, J.D.; Thomas, E.L. A dielectric omnidirectional reflector. Science 1998, 282, 1679–1682. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Szipöcs, R.; Ferencz, K.; Spielmann, C.; Krausz, F. Chirped multilayer coatings for broadband dispersion control in femtosecond lasers. Opt. Lett. 1994, 19, 201–203. [Google Scholar] [CrossRef] [Green Version]
- Weber, M.F.; Stover, C.A.; Gilbert, L.R.; Nevitt, T.J.; Ouderkirk, A.J. Giant birefringent optics in multilayer polymer mirrors. Science 2000, 287, 2451–2456. [Google Scholar] [CrossRef] [Green Version]
- Beauchamp, W.T.; Tuttle-Hart, T. UV/IR Reflecting Solar Cell Cover. U.S. Patent 5,449,413, 12 September 1995. [Google Scholar]
- Lequime, M. Tunable thin film filters: Review and perspectives. In Advances in Optical Thin Films, Proceedings of the SPIE—Optical Systems Design, St. Etienne, France, 30 September–3 October 2003; International Society for Optics and Photonics: Bellingham, WA, USA, 2004; Volume 5250, pp. 302–311. [Google Scholar]
- Williams, C.; Hong, N.; Julian, M.; Borg, S.; Kim, H.J. Tunable mid-wave infrared Fabry-Perot bandpass filters using phase-change GeSbTe. Opt. Express 2020, 28, 10583–10594. [Google Scholar] [CrossRef]
- Scobey, M.A. Stupik. Stable ultranarrow bandpass filters. In Optical Thin Films IV: New Developments, Proceedings of SPIE’s International Symposium on Optics, Imaging, and Instrumentation, San Diego, CA, USA, 25–27 July 1994; International Society for Optics and Photonics: Bellingham, WA, USA, 1994; Volume 2262, pp. 37–46. [Google Scholar]
- Serényi, M.; Rácz, M.; Lohner, T. Refractive index of sputtered silicon oxynitride layers for antireflection coating. Vacuum 2001, 61, 245–249. [Google Scholar] [CrossRef]
- Wang, Y.; Cheng, X.; Lin, Z.; Zhang, C.; Zhang, F. Optimization of PECVD silicon oxynitride films for anti-reflection coating. Vacuum 2003, 72, 345–349. [Google Scholar] [CrossRef]
- Schneider, J.; Schula, S.; Weinhold, W.P. Characterisation of the scratch resistance of annealed and tempered architectural glass. Thin Solid Films 2012, 520, 4190–4198. [Google Scholar] [CrossRef]
- Paulson, C.A.; Price, J.J.; Koch, K.W.; Kim, C.G.; Oh, J.H.; Lin, L.; Subramanian, A.N.; Zhang, B.; Amin, J.; Mayolet, A.; et al. Industrial-grade anti-reflection coatings with extreme scratch resistance. Opt. Lett. 2019, 44, 5977–5980. [Google Scholar] [CrossRef]
- Koch, K.W.; Hathaway, B.; Kosik Williams, C.; Amin, J.; Mayolet, A.; Aurongzeb, D.; McDonald, J.; Hart, S.D. Antireflection displays with ambient contrast enhancement for extended device battery lifetime and reduced energy consumption. J. Soc. Inf. Disp. 2020, 28, 801–807. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Bouchard, J.P.; Hart, G.A.; Oudard, J.F.; Paulson, C.A.; Sachenik, P.A.; Price, J.J. Silicon oxynitride based scratch resistant antireflective coatings. In Advanced Optics for Defense Applications: UV through LWIR III, SPIE Defense + Security, Orlando, FL, USA, 15–16 April, 2018; International Society for Optics and Photonics: Bellingham, WA, USA, 2018; Volume 10627, p. 106270G. [Google Scholar]
- Paulson, C.A. Scratch-Resistant and Optically Transparent Materials and Articles. U.S. Patent 10,603,870, 31 March 2020. [Google Scholar]
- Musil, J.; Baroch, P.; Vlček, J.; Nam, K.H.; Han, J.G. Reactive magnetron sputtering of thin films: Present status and trends. Thin Solid Films 2005, 475, 208–218. [Google Scholar] [CrossRef]
- Sproul, W.D. Very high rate reactive sputtering of TiN, ZrN and HfN. Thin Solid Films 1983, 107, 141–147. [Google Scholar] [CrossRef]
- Shimada, M.; Amazawa, T.; Ono, T.; Matsuo, S.; Oikawa, H. Ultrathin Al2O3 and AlN films deposited by reactive sputter using advanced electron cyclotron resonance plasma source. Vacuum 2000, 59, 727–734. [Google Scholar] [CrossRef]
- Lehan, J.P.; Sargent, R.B.; Klinger, R.E. High-rate aluminum oxide deposition by MetaModeTM reactive sputtering. J. Vac. Sci. Technol. A 1992, 10, 3401–3406. [Google Scholar] [CrossRef]
- Rademacher, D.; Zickenrott, T.; Vergöhl, M. Sputtering of dielectric single layers by metallic mode reactive sputtering and conventional reactive sputtering from cylindrical cathodes in a sputter-up configuration. Thin Solid Films 2013, 532, 98–105. [Google Scholar] [CrossRef]
- Oliver, W.C.; Pharr, G.M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 1992, 7, 1564–1583. [Google Scholar] [CrossRef]
- Oliver, W.C.; Pharr, G.M. Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. J. Mater. Res. 2004, 19, 3–20. [Google Scholar] [CrossRef]
- Lucas, B.N.; Oliver, W.C.; Swindeman, J.E. The dynamics of depth-sensing, frequency-specific indentation testing. Mat. Res. Soc. Symp. Proc. 1998, 522, 14. [Google Scholar] [CrossRef]
- Bressan, J.D.; Tramontin, A.; Rosa, C. Modeling of nanoindentation of bulk and thin film by finite element method. Wear 2005, 258, 115–122. [Google Scholar] [CrossRef]
- Hassani, S.; Bielawski, M.; Beres, W.; Martinu, L.; Balazinski, M.; Klemberg-Sapieha, J.E. Predictive tools for the design of erosion resistant coatings. Surf. Coat. Technol. 2008, 203, 204–210. [Google Scholar] [CrossRef]
Sample | Hardness at 100 nm GPa | Hardness at 500 nm GPa |
---|---|---|
WSC-Red-1 | 13.5 | 14.5 |
WSC-Pink-1 | 15.5 | 16.2 |
WSC-Green-1 | 14.9 | 14.0 |
WSC-Blue-1 | 11.0 | 13.3 |
WSC-Silver-1 | 12.9 | 14.3 |
Sample | Garnet Scratch | Hardness at 100 nm | Hardness at 500 nm |
---|---|---|---|
- | Grade | GPa | GPa |
WSC–Silver–2–B | 1 kg:A 4 kg:A | 10.8 | 17.2 |
WSC–Blue–2–B | 1 kg:A 4 kg:B | 14.9 | 19.9 |
WSC–Pink–2–B | 1 kg:A 4 kg:A | 11.8 | 19.0 |
WSC–Silver–3–B | 1 kg:A 4 kg:A | 14.4 | 19.9 |
Chemically Strengthened Glass (Ref.) | 1 kg:D 4 kg:D | ~8 GPa | ~8 GPa |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koch, K.W.; Lin, L.; Price, J.J.; Kim, C.-G.; Moon, D.-G.; Oh, S.-Y.; Oh, J.-K.; Oh, J.-H.; Paulson, C.A.; Zhang, B.; et al. Wavelength-Selective Coatings on Glass with High Hardness and Damage Resistance. Coatings 2020, 10, 1247. https://doi.org/10.3390/coatings10121247
Koch KW, Lin L, Price JJ, Kim C-G, Moon D-G, Oh S-Y, Oh J-K, Oh J-H, Paulson CA, Zhang B, et al. Wavelength-Selective Coatings on Glass with High Hardness and Damage Resistance. Coatings. 2020; 10(12):1247. https://doi.org/10.3390/coatings10121247
Chicago/Turabian StyleKoch, Karl W., Lin Lin, James J. Price, Chang-Gyu Kim, Dong-Gun Moon, Sang-Yoon Oh, Jung-Keun Oh, Jeong-Hong Oh, Charles A. Paulson, Binwei Zhang, and et al. 2020. "Wavelength-Selective Coatings on Glass with High Hardness and Damage Resistance" Coatings 10, no. 12: 1247. https://doi.org/10.3390/coatings10121247
APA StyleKoch, K. W., Lin, L., Price, J. J., Kim, C.-G., Moon, D.-G., Oh, S.-Y., Oh, J.-K., Oh, J.-H., Paulson, C. A., Zhang, B., Subramanian, A., Mayolet, A., Williams, C. K., & Hart, S. D. (2020). Wavelength-Selective Coatings on Glass with High Hardness and Damage Resistance. Coatings, 10(12), 1247. https://doi.org/10.3390/coatings10121247