ITO/SiO2/ITO Structure on a Sapphire Substrate Using the Oxidation of Ultra-Thin Si Films as an Insulating Layer for One-Glass-Solution Capacitive Touch-Screen Panels
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Dobrovinskaya:, E.R.; Lytvynov, L.A.; Pishchik, V. Properties of Sapphire; Springer: Boston, MA, USA, 2009. [Google Scholar]
- Loka, C.; Lee, K.; Moon, S.W.; Choi, Y.; Lee, K.S. Enhanced transmittance of sapphire by silicon oxynitride thin films annealed at high temperatures. Mater. Lett. 2018, 213, 354–357. [Google Scholar] [CrossRef]
- Kim, S.; Cho, J.; Char, K. Thermally stable antireflective coatings based on nanoporous organosilicate thin films. Langmuir 2007, 23, 6737–6743. [Google Scholar] [CrossRef] [PubMed]
- Yancey, S.E.; Zhong, W.; Heflin, J.R.; Ritter, A.L. The influence of void space on antireflection coatings of silica nanoparticle self-assembled films. J. Appl. Phys. 2006, 99. [Google Scholar] [CrossRef] [Green Version]
- Ahn, M.H.; Cho, E.S.; Kwon, S.J. Characteristics of ITO-resistive touch film deposited on a PET substrate by in-line DC magnetron sputtering. Vacuum 2014, 101, 221–227. [Google Scholar] [CrossRef]
- Lee, W.J.; Fang, Y.K.; Ho, J.J.; Chen, C.Y.; Tsai, R.Y.; Huang, D.; Ho, F.C.; Chou, H.W.; Chen, C.C. Pulsed-magnetron-sputtered low-temperature indium tin oxide films for flat-panel display applications. J. Electron. Mater. 2002, 31, 129–135. [Google Scholar] [CrossRef]
- Qin, H.; Dong, J.; Lee, Y.S. Fabrication and electrical characterization of multi-layer capacitive touch sensors on flexible substrates by additive e-jet printing. J. Manuf. Process. 2017, 28, 479–485. [Google Scholar] [CrossRef]
- Xia, N.; Gerhardt, R.A. Fabrication and characterization of highly transparent and conductive indium tin oxide films made with different solution-based methods. Mater. Res. Express 2016, 3, 1–11. [Google Scholar] [CrossRef]
- Kingon, A.I.; Maria, J.P.; Streiffer, S.K. Alternative dielectrics to silicon dioxide for memory and logic devices. Nature 2000, 406, 1032–1038. [Google Scholar] [CrossRef]
- Ho, W.J.; Lin, J.C.; Liu, J.J.; Bai, W.B.; Shiao, H.P. Electrical and Optical Characterization of Sputtered Silicon Dioxide, Indium Tin Oxide, and Silicon Dioxide/Indium Tin Oxide Antireflection Coating on Single-Junction GaAs Solar Cells. Materials 2017, 10, 700. [Google Scholar] [CrossRef] [Green Version]
- Mur, P.; Semeria, M.N.; Olivier, M.; Papon, A.M.; Leroux, C.; Reimbold, G.; Gentile, P.; Magnea, N.; Baron, T.; Clerc, R.; et al. Ultra-thin oxides grown on silicon (1 0 0) by rapid thermal oxidation for CMOS and advanced devices. Appl. Surf. Sci. 2001, 175–176, 726–733. [Google Scholar] [CrossRef]
- Lerch, W.; Roters, G.; Münzinger, P.; Mader, R.; Ostermeir, R. Wet rapid thermal oxidation of silicon with a pyrogenic system. Mater. Sci. Eng. B 1998, B54, 153–160. [Google Scholar] [CrossRef]
- Ahmed, N.M.; Sabah, F.A.; Abdulgafour, H.I.; Alsadig, A.; Sulieman, A.; Alkhoaryef, M. The effect of post annealing temperature on grain size of indium-tin-oxide for optical and electrical properties improvement. Results Phys. 2019, 13, 102159. [Google Scholar] [CrossRef]
- Song, S.; Yang, T.; Liu, J.; Xin, Y.; Li, Y.; Han, S. Rapid thermal annealing of ITO films. Appl. Surf. Sci. 2011, 257, 7061–7064. [Google Scholar] [CrossRef]
- Park, J.H.; Buurma, C.; Sivananthan, S.; Kodama, R.; Gao, W.; Gessert, T.A. The effect of post-annealing on Indium Tin Oxide thin films by magnetron sputtering method. Appl. Surf. Sci. 2014, 307, 388–392. [Google Scholar] [CrossRef]
- Munkholm, A.; Brennan, S. Ordering in Thermally Oxidized Silicon. Phys. Rev. Lett. 2004, 93. [Google Scholar] [CrossRef] [PubMed]
- Iida, Y.; Shimura, T.; Harada, J.; Samata, S.; Matsushita, Y. A structural study of the thermally oxidized Si(001) wafer by X-ray CTR scattering. Surf. Sci. 1991, 258, 235. [Google Scholar] [CrossRef]
- Nagata, K.; Ogura, A.; Hirosawa, I.; Suwa, T.; Teramoto, A.; Hattori, T.; Ohmi, T. Structural Analyses of Thin SiO2 Films Formed by Thermal Oxidation of Atomically Flat Si Surface by Using Synchrotron Radiation X-Ray Characterization. ECS J. Solid State Sci. Technol. 2015, 4, N96. [Google Scholar] [CrossRef]
- Tokuda, N.; Murata, M.; Hojo, D.; Yamabe, K. SiO2 Surface and SiO2/Si Interface Topography Change by Thermal Oxidation. Jpn. J. Appl. Phys. 2001, 40, 4763. [Google Scholar] [CrossRef]
- Hasunuma, R.; Okamoto, J.; Tokuda, N.; Yamabe, K. Nonuniformity in Ultrathin SiO2 on Si(111) Characterized by Conductive Atomic Force Microscopy. Jpn. J. Appl. Phys. 2004, 43, 7861. [Google Scholar] [CrossRef]
- Lai, F.; Li, M.; Wang, H.; Jiang, Y.; Song, Y. Effect of oxygen flow rate on the properties of SiOx films deposited by reactive magnetron sputtering. Chin. Opt. Lett. 2005, 3, 490–493. [Google Scholar]
- Huang, F.; Song, Q.; Li, M.; Xie, B.; Wang, H.; Jiang, Y.; Song, Y. Influences of annealing temperature on the optical properties of SiOx thin film prepared by reactive magnetron sputtering. Appl. Surf. Sci. 2008, 255, 2006–2011. [Google Scholar] [CrossRef]
- Ferriu, F.; Devine, R.A.B. Densification and porosity in low-temperature-deposited oxide. J. Non-Cryst. Solids 1989, 113, 100–102. [Google Scholar] [CrossRef]
- MacLeod, A.; Clark, C. The Essential MacLeod Version 9. 6. 415; Thin Film Center Inc.: Tucson, AZ, USA, 2012; pp. 85716–95227. [Google Scholar]
- Kageshima, H.; Shiraishi, K. First-principles study of oxide growth on si(100) surfaces and at SiO2/si(100) interfaces. Phys. Rev. Lett. 1998, 81, 5936–5939. [Google Scholar] [CrossRef]
- Silva, A.G.; Pedersen, K.; Li, Z.S.; Morgen, P. Oxidation of the surface of a thin amorphous silicon film. Thin Solid Films 2011, 520, 697–699. [Google Scholar] [CrossRef]
- Chalmers, A. Physical Metallurgy, 1st ed.; John Wiley & Sons Inc: Hoboken, NJ, USA, 1959. [Google Scholar]
- Barr, T.L. An XPS study of Si as it occurs in adsorbents, catalysts, and thin films. Appl. Surf. Sci. 1983, 15, 1–35. [Google Scholar] [CrossRef]
- Khassin, A.A.; Yurieva, T.M.; Demeshkina, M.P.; Kustova, G.N.; Itenberg, I.S.; Kaichev, V.V.; Plyasova, L.M.; Anufrienko, V.F.; Molina, I.Y.; Larina, T.V.; et al. Characterization of the nickel-amesite-chlorite-vermiculite system. Part I. Silicon binding in Ni-Mg-Al phylloaluminosilicates. Phys. Chem. Chem. Phys. 2003, 5, 4025–4031. [Google Scholar] [CrossRef]
- Alfonsetti, R.; Lozzi, L.; Passacantando, M.; Picozzi, P.; Santucci, S. XPS studies on SiOx thin films. Appl. Surf. Sci. 1993, 70, 222–225. [Google Scholar] [CrossRef]
- Wang, L.; Jiang, Y.; Jiang, C.; Liu, H.; Ji, Y.; Zhang, F.; Fan, R.; Chen, D. Effect of oxygen flow rate on microstructure properties of SiO2 thin films prepared by ion beam sputtering. J. Non. Cryst. Solids 2018, 482, 203–207. [Google Scholar] [CrossRef]
- Hu, Y.; Diao, X.; Wang, C.; Hao, W.; Wang, T. Effects of heat treatment on properties of ITO films prepared by rf magnetron sputtering. Vacuum 2004, 75, 183–188. [Google Scholar] [CrossRef]
- Lee, C.; Park, J.K.; Piao, C.; Seo, H.; Choi, J.; Chun, J. Mutual Capacitive Sensing Touch Screen Controller for Ultrathin Display with Extended Signal Passband Using Negative Capacitance. Sensors 2018, 18, 3637. [Google Scholar] [CrossRef] [Green Version]
- Heo, H.D.; Kim, D.S.; Eom, S.Y. On-Cell TSP Display Device. U.S. Patent Application No. 13,214,678, 1 March 2012. [Google Scholar]
- Barrett, G.; Omote, R. Projected-Capacitive Touch Technology. Inf. Disp. 2010, 26, 16–21. [Google Scholar] [CrossRef]
- Hotelling, S.; Strickon, J.A.; Huppi, B.Q. Multipoint touchscreen. U.S. Patent 0097991 A1, 11 May 2006. [Google Scholar]
- Phares, R.; Fihn, M. Introduction to Touchscreen Technologies in Handbook of Visual Display Technology; Springer: Berlin, Germany, 2012; pp. 935–974. [Google Scholar]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Joo, S.Y.; Loka, C.; Jo, Y.W.; Reddyprakash, M.; Moon, S.W.; Choi, Y.; Lee, S.E.; Cho, G.S.; Lee, K.-S. ITO/SiO2/ITO Structure on a Sapphire Substrate Using the Oxidation of Ultra-Thin Si Films as an Insulating Layer for One-Glass-Solution Capacitive Touch-Screen Panels. Coatings 2020, 10, 134. https://doi.org/10.3390/coatings10020134
Joo SY, Loka C, Jo YW, Reddyprakash M, Moon SW, Choi Y, Lee SE, Cho GS, Lee K-S. ITO/SiO2/ITO Structure on a Sapphire Substrate Using the Oxidation of Ultra-Thin Si Films as an Insulating Layer for One-Glass-Solution Capacitive Touch-Screen Panels. Coatings. 2020; 10(2):134. https://doi.org/10.3390/coatings10020134
Chicago/Turabian StyleJoo, Shin Yong, Chadrasekhar Loka, Young Woong Jo, Maddipatla Reddyprakash, Sung Whan Moon, YiSik Choi, Seong Eui Lee, Gue Serb Cho, and Kee-Sun Lee. 2020. "ITO/SiO2/ITO Structure on a Sapphire Substrate Using the Oxidation of Ultra-Thin Si Films as an Insulating Layer for One-Glass-Solution Capacitive Touch-Screen Panels" Coatings 10, no. 2: 134. https://doi.org/10.3390/coatings10020134
APA StyleJoo, S. Y., Loka, C., Jo, Y. W., Reddyprakash, M., Moon, S. W., Choi, Y., Lee, S. E., Cho, G. S., & Lee, K. -S. (2020). ITO/SiO2/ITO Structure on a Sapphire Substrate Using the Oxidation of Ultra-Thin Si Films as an Insulating Layer for One-Glass-Solution Capacitive Touch-Screen Panels. Coatings, 10(2), 134. https://doi.org/10.3390/coatings10020134