Advanced Strategies in Thin Films Engineering by Magnetron Sputtering
Abstract
:1. Introduction
2. Thin Films Engineering: Where Do We Stand?
3. This Special Issue
Funding
Acknowledgments
Conflicts of Interest
References
- Gleiter, H. Nanostructured materials: Basic concepts and microstructure. Acta Mater. 2000, 48, 1–29. [Google Scholar] [CrossRef] [Green Version]
- Lakhtakia, Y.; Messier, R. Sculptured Thin Films; SPIE Press: Bellingham, WA, USA, 2005. [Google Scholar] [CrossRef]
- Fendler, J.H. Self-assembled nanostructured materials. Chem. Mater. 1996, 8, 1616–1624. [Google Scholar] [CrossRef]
- Xi, J.Q.; Schubert, M.H.; Kim, J.K.; Schubert, E.F.; Chen, M.; Lin, S.Y.; Liu, W.; Smart, J.A. Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection. Nat. Photonics 2007, 1, 176–179. [Google Scholar] [CrossRef]
- Schlom, D.G.; Chen, L.Q.; Pan, X.; Schmehl, A.; Zurbuchen, M.A. A thin film approach to engineering functionality into oxides. J. Am. Ceram. Soc. 2008, 91, 2429–2454. [Google Scholar] [CrossRef]
- Bunker, B.B.; Rieke, P.C.; Tarasevich, B.J.; Campbell, A.A.; Fryxell, G.E.; Graff, G.L.; Song, L.; Liu, J.; Virden, J.W.; McVay, G.L. Ceramic thin-film formation on functionalized interfaces through biomimetic processing. Science 1994, 264, 48–55. [Google Scholar] [CrossRef]
- Choy, K.L. Chemical vapour deposition of coatings. Prog. Mater. Sci. 2003, 48, 57–170. [Google Scholar] [CrossRef]
- Hawkeye, M.M.; Brett, M.J. Glancing angle deposition: Fabrication, properties, and applications of micro-and nanostructured thin films. J. Vac. Sci. Technol. 2007, 25, 1317–1336. [Google Scholar] [CrossRef]
- Valet, T.; Fert, A. Theory of the perpendicular magnetoresistance in magnetic multilayers. Phys. Rev. B 1993, 48, 7099–7113. [Google Scholar] [CrossRef]
- Ohta, T.; Bostwick, A.A.; McChesney, J.L.; Seyller, T.; Horn, K.; Rotenberg, E. Interlayer interaction and electronic screening in multilayer graphene investigated with angle-resolved photoemission spectroscopy. Phys. Rev. Lett. 2007, 98, 206802–206804. [Google Scholar] [CrossRef]
- Choi, K.; Park, S.H.; Song, Y.M.; Lee, Y.T.; Hwangbo, C.K.; Yang, H.; Lee, H.S. Nano-tailoring the surface structure for the monolithic high-performance antireflection polymer film. Adv. Mater. 2010, 22, 3713–3718. [Google Scholar] [CrossRef]
- Spillman, W.B., Jr.; Sirkis, J.S.; Garnider, P.T. Smart materials and structures: What are they? Smart Mater. Struct. 1996, 5, 247–254. [Google Scholar] [CrossRef]
- Arico, A.S.; Bruce, P.; Scrosati, B.; Tarascon, J.M.; van Schalkwijk, W. Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 2005, 4, 366–377. [Google Scholar] [CrossRef]
- Grier, D.G. A revolution in optical manipulation. Nature 2003, 424, 810–816. [Google Scholar] [CrossRef]
- Brett, M.J.; Hawkeye, M.M. New materials at a glance. Science 2008, 319, 1192–1193. [Google Scholar] [CrossRef]
- Saladuhkin, I.; Abadias, G.; Uglov, V.; Zlotski, S.; Janse van Vuuren, A.; Herman O’Connell, J. Structural properties and oxidation resistance of ZrN/SiNx, CrN/SiNx and AlN/SiNx multilayered films deposited by magnetron sputtering technique. Coatings 2020, 10, 149. [Google Scholar] [CrossRef] [Green Version]
- Liang, H.; Geng, X.; Li, W.; Panepinto, A.; Thiry, D.; Chen, M.; Snyders, R. Experimental and modeling study of the fabrication of Mg nano-sculptured films by magnetron sputtering combined with glancing angle deposition. Coatings 2019, 9, 361. [Google Scholar] [CrossRef] [Green Version]
- Proença, M.; Rodrigues, M.S.; Borges, J.; Vaz, F. Gas sensing with nanoplasmonic thin films composed of nanoparticles (Au, Ag) dispersed in CuO matrix. Coatings 2019, 9, 337. [Google Scholar] [CrossRef] [Green Version]
- Cougnon, F.; Depla, D. The Seebeck coefficients of sputter deposited metallic thin films: The role of process conditions. Coatings 2019, 9, 299. [Google Scholar] [CrossRef] [Green Version]
- Achenbach, J.O.; Mraz, S.; Primetzhofer, D.; Schneider, J.M. Correlative experimental and theoretical investigation of the angle-resolved composition evolution of thin films sputtered from a compound Mo2BC target. Coatings 2019, 9, 206. [Google Scholar] [CrossRef] [Green Version]
- Tuan, T.T.A.; Kuo, D.H.; Cao, P.T.; Nguyen, V.S.; Pham, Q.P.; Nghi, V.K.; Tran, N.P.L. Electrical characterization of RF reactive sputtered p-Mg-InxGa1-xN/n-Si hetero-junction diodes without using buffer layer. Coatings 2019, 9, 699. [Google Scholar] [CrossRef] [Green Version]
- Tuan, T.T.A.; Kuo, D.H.; Cao, P.T.; Pham, Q.P.; Nghi, V.K.; Tran, N.P.L. Electrical and structural properties of all-sputtered Al/SiO2/p-GaN MOS Schottky diode. Coatings 2019, 9, 685. [Google Scholar] [CrossRef] [Green Version]
- Thao, C.P.; Kuo, D.H.; Tuan, T.T.A.; Tuan, K.A.; Vu, N.H.; Na, T.T.V.S.; Nhut, K.V.; Sau, N.V. The effect of RF sputtering conditions on the physical characteristics of deposited GeGaN thin film. Coatings 2019, 9, 645. [Google Scholar] [CrossRef] [Green Version]
- Gago, R.; Prucnal, S.; Hübner, R.; Munnik, F.; Esteban-Mendoza, D.; Jiménez, I.; Palomares, J. Phase selectivity in Cr and N co-doped TiO2 films by modulated sputter growth and post-deposition flash-lamp-annealing. Coatings 2019, 9, 448. [Google Scholar] [CrossRef] [Green Version]
- Eadi, S.B.; Song, H.S.; Song, H.D.; Oh, J.; Lee, H.D. Nickel film deposition with varying RF power for the reduction of contact resistance in NiSi. Coatings 2019, 9, 349. [Google Scholar] [CrossRef] [Green Version]
- Achour, A.; Islam, M.; Ahmad, I.; Saeed, K.; Solaymani, S. Electrochemical stability enhancement in reactive magnetron sputtered VN films upon annealing treatment. Coatings 2019, 9, 72. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Palmero, A.; Martin, N. Advanced Strategies in Thin Films Engineering by Magnetron Sputtering. Coatings 2020, 10, 419. https://doi.org/10.3390/coatings10040419
Palmero A, Martin N. Advanced Strategies in Thin Films Engineering by Magnetron Sputtering. Coatings. 2020; 10(4):419. https://doi.org/10.3390/coatings10040419
Chicago/Turabian StylePalmero, Alberto, and Nicolas Martin. 2020. "Advanced Strategies in Thin Films Engineering by Magnetron Sputtering" Coatings 10, no. 4: 419. https://doi.org/10.3390/coatings10040419
APA StylePalmero, A., & Martin, N. (2020). Advanced Strategies in Thin Films Engineering by Magnetron Sputtering. Coatings, 10(4), 419. https://doi.org/10.3390/coatings10040419