Recent Advancements in the Use of Aerosol-Assisted Atmospheric Pressure Plasma Deposition
Abstract
:1. Introduction
2. Coupling Aerosols to Plasma Deposition
- Modifications induced by the liquid droplets in the plasma (radiation absorption by the liquid, perturbation of the electric field);
- Modifications of the liquid droplets due to plasma (droplet charging, liquid evaporation and coalescence;
- Transport phenomena between the plasma and droplets (gas diffusion in the droplets, charge particle migration).
- Plasma deposition of single-component coatings (method Ia);
- Plasma deposition of composite coatings (methods Ib and II).
3. Aerosol-Assisted Atmospheric Pressure Plasma Deposition
3.1. Plasma Deposition of Single-Component Coatings
3.2. Plasma Deposition of Composite Coatings
4. Conclusions
- Macromolecular compounds, such as biomolecules, can be added to the plasma feed;
- Labile drugs can be embedded in a composite coating;
- Some studies indicate some interesting advantages of atomizing active agents in the presence of plasma for wound healing, and similar applications.
Author Contributions
Funding
Conflicts of Interest
References
- Kulkarni, P.; Baron, P.A.; Willeke, K. Aerosol Measurement: Principles, Techniques, and Applications, 3rd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2011; ISBN 9780470387412. [Google Scholar]
- Stancampiano, A.; Gallingani, T.; Gherardi, M.; Machala, Z.; Maguire, P.; Colombo, V.; Pouvesle, J.M.; Robert, E. Plasma and aerosols: Challenges, opportunities and perspectives. Appl. Sci. 2019, 9, 3861. [Google Scholar] [CrossRef] [Green Version]
- Bhattarai, C.; Samburova, V.; Sengupta, D.; Iaukea-Lum, M.; Watts, A.C.; Moosmüller, H.; Khlystov, A.Y. Physical and chemical characterization of aerosol in fresh and aged emissions from open combustion of biomass fuels. Aerosol Sci. Technol. 2018, 52, 1266–1282. [Google Scholar] [CrossRef]
- Vehring, R.; Foss, W.R.; Lechuga-Ballesteros, D. Particle formation in spray drying. J. Aerosol Sci. 2007, 38, 728–746. [Google Scholar] [CrossRef]
- Marchand, P.; Hassan, I.A.; Parkin, I.P.; Carmalt, C.J. Aerosol-assisted delivery of precursors for chemical vapour deposition: Expanding the scope of CVD for materials fabrication. Dalton Trans. 2013, 42, 9406–9422. [Google Scholar] [CrossRef]
- Palgrave, R.G.; Parkin, I.P. Aerosol assisted chemical vapor deposition using nanoparticle precursors: A route to nanocomposite thin films. J. Am. Chem. Soc. 2006, 128, 1587–1597. [Google Scholar] [CrossRef]
- Hou, X.; Choy, K.L. Processing and applications of aerosol-assisted chemical vapor deposition. Chem. Vap. Depos. 2006, 12, 583–596. [Google Scholar] [CrossRef]
- Hou, X.; Choy, K.L. Deposition mechanism and structural characterization of TiO2 films produced using ESAVD method. Surf. Coat. Technol. 2004, 180, 15–19. [Google Scholar] [CrossRef]
- Hou, X.; Choy, K.L. Crystal growth of ZnS films by a charged aerosol-assisted vapor deposition process. Chem. Vap. Depos. 2006, 12, 631–636. [Google Scholar] [CrossRef]
- Plasma Deposition, Treatment, and Etching of Polymers; D’Agostino, R. (Ed.) Academic Press: San Diego, CA, USA, 1990; ISBN 9780122004308. [Google Scholar]
- Chapman, B. Glow Discharge Processes Sputtering and Plasma Etching; John Wiley & Sons: New York, NY, USA, 1980. [Google Scholar]
- Li, J.; Liu, K.; Yan, S.; Li, Y.; Han, D. Application of thermal plasma technology for the treatment of solid wastes in China: An overview. Waste Manag. 2016, 58, 260–269. [Google Scholar] [CrossRef]
- Weltmann, K.D.; Kolb, J.F.; Holub, M.; Uhrlandt, D.; Šimek, M.; Ostrikov, K.; Hamaguchi, S.; Cvelbar, U.; Černák, M.; Locke, B.; et al. The future for plasma science and technology. Plasma Process. Polym. 2019, 16, 1800118. [Google Scholar] [CrossRef] [Green Version]
- Fernández-Blázquez, J.P.; Setzer, S.; Del Campo, A. Nanostructured polymer fibers with enhanced adhesion to epoxy matrices. Plasma Process. Polym. 2013, 10, 207–212. [Google Scholar] [CrossRef]
- Chatelier, R.C.; Xie, X.; Gengenbach, T.R.; Griesser, H.J. Quantitative Analysis of Polymer Surface Restructuring. Langmuir 1995, 11, 2576–2584. [Google Scholar] [CrossRef]
- Balazs, D.J.; Hollenstein, C.; Mathieu, H.J. Fluoropolymer coating of medical grade poly(vinyl chloride) by plasma-enhanced chemical vapor deposition techniques. Plasma Process. Polym. 2005, 2, 104–111. [Google Scholar] [CrossRef]
- Coclite, A.M.; Milella, A.; d’Agostino, R.; Palumbo, F. On the relationship between the structure and the barrier performance of plasma deposited silicon dioxide-like films. Surf. Coat. Technol. 2010, 204, 4012–4017. [Google Scholar] [CrossRef]
- Achard, J.; Tallaire, A.; Sussmann, R.; Silva, F.; Gicquel, A. The control of growth parameters in the synthesis of high-quality single crystalline diamond by CVD. J. Cryst. Growth 2005, 284, 396–405. [Google Scholar] [CrossRef]
- Trizio, I.; Garzia Trulli, M.; Lo Porto, C.; Pignatelli, D.; Camporeale, G.; Palumbo, F.; Sardella, E.; Gristina, R.; Favia, P. Plasma Processes for Life Sciences. In Reference Module in Chemistry, Molecular Sciences and Chemical Engineering; Elsevier Inc.: Waltham, MA, USA, 2018; pp. 1–24. [Google Scholar]
- Su, X.; Wu, Y.; Zhang, P.; Xin, Q.; Wang, B. Development of atmospheric pressure plasma processing machine tool for large aperture optics. In Proceedings of the 8th International Symposium on Advanced Optical Manufacturing and Testing Technologies: Advanced Optical Manufacturing Technologies, Suzhou, China, 26–29 April 2016. [Google Scholar]
- Fang, Z.; Ding, Z.; Shao, T.; Zhang, C. Hydrophobic surface modification of epoxy resin using an atmospheric pressure plasma jet array. IEEE Trans. Dielectr. Electr. Insul. 2016, 23, 2288–2293. [Google Scholar] [CrossRef]
- Penkov, O.V.; Lee, D.H.; Kim, H.; Kim, D.E. Frictional behavior of atmospheric plasma jet deposited carbon-ZnO composite coatings. Compos. Sci. Technol. 2013, 77, 60–66. [Google Scholar] [CrossRef]
- Massines, F.; Sarra-Bournet, C.; Fanelli, F.; Naudé, N.; Gherardi, N. Atmospheric pressure low temperature direct plasma technology: Status and challenges for thin film deposition. Plasma Process. Polym. 2012, 9, 1041–1073. [Google Scholar] [CrossRef]
- Armenise, V.; Fanelli, F.; Fracassi, F. Atmospheric pressure plasma treatment of polyurethane foams for heavy metals removal from water. In Proceedings of the 2016 IEEE Nanotechnology Materials and Devices Conference (NMDC), Toulouse, France, 9–12 October 2016. [Google Scholar]
- Bosso, P.; Fanelli, F.; Fracassi, F. Deposition of Water-Stable Coatings Containing Carboxylic Acid Groups by Atmospheric Pressure Cold Plasma Jet. Plasma Process. Polym. 2016, 13, 217–226. [Google Scholar] [CrossRef]
- Bazinette, R.; Lelièvre, J.F.; Gaudy, L.; Massines, F. Influence of the Discharge Mode on the Optical and Passivation Properties of SiNx:H Deposited by PECVD at Atmospheric Pressure. Energy Procedia 2016, 92, 309–316. [Google Scholar] [CrossRef] [Green Version]
- Reuter, R.; Gherardi, N.; Benedikt, J. Effect of N 2 dielectric barrier discharge treatment on the composition of very thin SiO 2-like films deposited from hexamethyldisiloxane at atmospheric pressure. Appl. Phys. Lett. 2012, 101, 194104. [Google Scholar] [CrossRef]
- Li, D.; Li, N.; Su, X.; Liu, K.; Ji, P.; Wang, B. Characterization of fused silica surface topography in capacitively coupled atmospheric pressure plasma processing. Appl. Surf. Sci. 2019, 489, 648–657. [Google Scholar] [CrossRef]
- Li, Z.; Li, Y.; Cao, P.; Zhao, H. Surface Decontamination of Chemical Agent Surrogates Using an Atmospheric Pressure Air Flow Plasma Jet. Plasma Sci. Technol. 2013, 15, 696. [Google Scholar] [CrossRef]
- Machala, Z.; Graves, D.B. Frugal Biotech Applications of Low-Temperature Plasma. Trends Biotechnol. 2018, 36, 579–581. [Google Scholar] [CrossRef]
- Wang, H.B.; Gao, J.F.; Peng, D.K.; Meng, G.Y. Plasma deposition of La0.8Sr0.2MnO3 thin films on yttria-stabilized zirconia from aerosol precursor. Mater. Chem. Phys. 2001, 72, 297–300. [Google Scholar] [CrossRef]
- Soukup, L.; Hubička, Z.; Churpita, A.; Čada, M.; Pokorný, P.; Zemek, J.; Jurek, K.; Jastrabík, L. Investigation of the atmospheric RF torch-barrier plasma jet for deposition of CeOx thin films. Surf. Coat. Technol. 2003, 169, 571–574. [Google Scholar] [CrossRef]
- Ward, L.J.; Schofield, W.C.E.; Badyal, J.P.S.; Goodwin, A.J.; Merlin, P.J. Atmospheric pressure plasma deposition of structurally well-defined polyacrylic acid films. Chem. Mater. 2003, 15, 1466–1469. [Google Scholar] [CrossRef]
- Vangeneugden, D.; Paulussen, S.; Goossens, O.; Rego, R.; Rose, K. Aerosol-assisted plasma deposition of barrier coatings using organic-inorganic sol-gel precursor systems. Chem. Vap. Depos. 2005, 11, 491–496. [Google Scholar] [CrossRef]
- O’Hare, L.A.; O’Neill, L.; Goodwin, A.J. Anti-microbial coatings by agent entrapment in coatings deposited via atmospheric pressure plasma liquid deposition. Surf. Interface Anal. 2006, 38, 1519–1524. [Google Scholar] [CrossRef]
- Tatoulian, M.; Arefi-Khonsari, F.; Borra, J.P. Deposition of organic coatings at atmospheric pressure from liquid precursors. Plasma Process. Polym. 2007, 4, 360–369. [Google Scholar] [CrossRef]
- Heyse, P.; Dams, R.; Paulussen, S.; Houthoofd, K.; Janssen, K.; Jacobs, P.A.; Sels, B.F. Dielectric barrier discharge at atmospheric pressure as a tool to deposit versatile organic coatings at moderate power input. Plasma Process. Polym. 2007, 4, 145–157. [Google Scholar] [CrossRef]
- Twomey, B.; Rahman, M.; Byrne, G.; Hynes, A.; O’Hare, L.A.; O’Neill, L.; Dowling, D. Effect of plasma exposure on the chemistry and morphology of aerosol-assisted, plasma-deposited coatings. Plasma Process. Polym. 2008, 5, 737–744. [Google Scholar] [CrossRef]
- Leroux, F.; Campagne, C.; Perwuelz, A.; Gengembre, L. Fluorocarbon nano-coating of polyester fabrics by atmospheric air plasma with aerosol. Appl. Surf. Sci. 2008, 254, 3902–3908. [Google Scholar] [CrossRef]
- Bour, J.; Bardon, J.; Aubriet, H.; Del Frari, D.; Verheyde, B.; Dams, R.; Vangeneugden, D.; Ruch, D. Different ways to plasma-polymerize HMDSO in DBD configuration at atmospheric pressure for corrosion protection. Plasma Process. Polym. 2008, 5, 788–796. [Google Scholar] [CrossRef]
- Beck, A.J.; Short, R.D.; Matthews, A. Deposition of functional coatings from acrylic acid and octamethylcyclotetrasiloxane onto steel using an atmospheric pressure dielectric barrier discharge. Surf. Coat. Technol. 2008, 203, 822–825. [Google Scholar] [CrossRef]
- Albaugh, J.; O’Sullivan, C.; O’Neill, L. Controlling deposition rates in an atmospheric pressure plasma system. Surf. Coat. Technol. 2008, 203, 844–847. [Google Scholar] [CrossRef]
- Tynan, J.; Ward, P.; Byrne, G.; Dowling, D.P. Deposition of biodegradable polycaprolactone coatings using an in-line atmospheric pressure plasma system. Plasma Process. Polym. 2009, 6, 51–56. [Google Scholar] [CrossRef]
- O’Neill, L.; O’Sullivan, C. Polymeric coatings deposited from an aerosol-assisted non-thermal plasma jet. Chem. Vap. Depos. 2009, 15, 21–26. [Google Scholar] [CrossRef]
- Bardon, J.; Bour, J.; Del Frari, D.; Arnoult, C.; Ruch, D. Dispersion of cerium-based nanoparticles in an organosilicon plasma polymerized coating: Effect on corrosion protection. Plasma Process. Polym. 2009, 6, 655–659. [Google Scholar] [CrossRef]
- O’Neill, L.; Herbert, P.A.F.; Stallard, C.; Dowling, D.P. Investigation of the effects of gas versus liquid deposition in an aerosol-assisted corona deposition process. Plasma Process. Polym. 2010, 7, 43–50. [Google Scholar] [CrossRef]
- Nisol, B.; Poleunis, C.; Bertrand, P.; Reniers, F. Poly(ethylene glycol) films deposited by atmospheric pressure plasma liquid deposition and atmospheric pressure plasma-enhanced chemical vapour deposition: Process, chemical composition analysis and biocompatibility. Plasma Process. Polym. 2010, 7, 715–725. [Google Scholar] [CrossRef]
- Heyse, P.; Van Hoeck, A.; Roeffaers, M.B.J.; Raffin, J.P.; Steinbüchel, A.; Stöveken, T.; Lammertyn, J.; Verboven, P.; Jacobs, P.A.; Hofkens, J.; et al. Exploration of atmospheric pressure plasma nanofilm technology for straightforward bio-active coating deposition: Enzymes, plasmas and polymers, an elegant synergy. Plasma Process. Polym. 2011, 8, 965–974. [Google Scholar] [CrossRef]
- Herbert, P.A.F.; O’Neill, L.; Jaroszyńska-Wolińska, J.; Stallard, C.P.; Ramamoorthy, A.; Dowling, D.P. A comparison between gas and atomized liquid precursor states in the deposition of functional coatings by pin corona plasma. Plasma Process. Polym. 2011, 8, 230–238. [Google Scholar] [CrossRef]
- Dembele, A.; Rahman, M.; Reid, I.; Twomey, B.; MacElroy, J.M.D.; Dowling, D.P. Deposition of hybrid organic-inorganic composite coatings using an atmospheric plasma jet system. J. Nanosci. Nanotechnol. 2011, 11, 8730–8737. [Google Scholar] [CrossRef]
- Boscher, N.D.; Choquet, P.; Duday, D.; Kerbellec, N.; Lambrechts, J.C.; Maurau, R. Luminescent lanthanide-based hybrid coatings deposited by atmospheric pressure plasma assisted chemical vapour deposition. J. Mater. Chem. 2011, 21, 18959–18961. [Google Scholar] [CrossRef]
- Da Ponte, G.; Sardella, E.; Fanelli, F.; Van Hoeck, A.; d’Agostino, R.; Paulussen, S.; Favia, P. Atmospheric pressure plasma deposition of organic films of biomedical interest. Surf. Coat. Technol. 2011, 205, S525–S528. [Google Scholar] [CrossRef]
- Amorosi, C.; Ball, V.; Bour, J.; Bertani, P.; Toniazzo, V.; Ruch, D.; Averous, L.; Michel, M. One step preparation of plasma based polymer films for drug release. Mater. Sci. Eng. C 2012, 32, 2103–2108. [Google Scholar] [CrossRef]
- Da Ponte, G.; Sardella, E.; Fanelli, F.; D’Agostino, R.; Gristina, R.; Favia, P. Plasma deposition of PEO-like coatings with aerosol-assisted dielectric barrier discharges. Plasma Process. Polym. 2012, 9, 1176–1183. [Google Scholar] [CrossRef]
- Mertz, G.; Fouquet, T.; Becker, C.; Ziarelli, F.; Ruch, D. A methacrylic anhydride difunctional precursor to produce a hydrolysis-sensitive coating by aerosol-assisted atmospheric plasma process. Plasma Process. Polym. 2014, 11, 728–733. [Google Scholar] [CrossRef]
- Yang, Y.-W.; Camporeale, G.; Sardella, E.; Dilecce, G.; Wu, J.-S.; Palumbo, F.; Favia, P. Deposition of hydroxyl functionalized films by means of ethylene aerosol-assisted atmospheric pressure plasma. Plasma Process. Polym. 2014, 11, 1102–1111. [Google Scholar] [CrossRef]
- Fanelli, F.; Mastrangelo, A.M.; Fracassi, F. Aerosol-assisted atmospheric cold plasma deposition and characterization of superhydrophobic organic-inorganic nanocomposite thin films. Langmuir 2014, 30, 857–865. [Google Scholar] [CrossRef] [PubMed]
- Mertz, G.; Fouquet, T.; Ahrach, H.I.E.; Becker, C.; Phan, T.N.T.; Ziarelli, F.; Gigmes, D.; Ruch, D. Water Sensitive Coatings Deposited by Aerosol Assisted Atmospheric Plasma Process: Tailoring the Hydrolysis Rate by the Precursor Chemistry. Plasma Process. Polym. 2015, 12, 1293–1301. [Google Scholar] [CrossRef]
- Palumbo, F.; Camporeale, G.; Yang, Y.-W.; Wu, J.-S.; Sardella, E.; Dilecce, G.; Calvano, C.D.; Quintieri, L.; Caputo, L.; Baruzzi, F.; et al. Direct Plasma Deposition of Lysozyme-Embedded Bio-Composite Thin Films. Plasma Process. Polym. 2015, 12, 1302–1310. [Google Scholar] [CrossRef]
- Profili, J.; Levasseur, O.; Naudé, N.; Chaneac, C.; Stafford, L.; Gherardi, N. Influence of the voltage waveform during nanocomposite layer deposition by aerosol-assisted atmospheric pressure Townsend discharge. J. Appl. Phys. 2016, 120, 053302. [Google Scholar] [CrossRef]
- Profili, J.; Levasseur, O.; Blaisot, J.B.; Koronai, A.; Stafford, L.; Gherardi, N. Nebulization of Nanocolloidal Suspensions for the Growth of Nanocomposite Coatings in Dielectric Barrier Discharges. Plasma Process. Polym. 2016, 13, 981–989. [Google Scholar] [CrossRef]
- Liguori, A.; Traldi, E.; Toccaceli, E.; Laurita, R.; Pollicino, A.; Focarete, M.L.; Colombo, V.; Gherardi, M. Co-Deposition of Plasma-Polymerized Polyacrylic Acid and Silver Nanoparticles for the Production of Nanocomposite Coatings Using a Non-Equilibrium Atmospheric Pressure Plasma Jet. Plasma Process. Polym. 2016, 13, 623–632. [Google Scholar] [CrossRef]
- Pignatelli, D.; Sardella, E.; Palumbo, F.; Lo Porto, C.; Taccola, S.; Greco, F.; Mattoli, V.; Favia, P. Plasma assisted deposition of free-standing nanofilms for biomedical applications. Plasma Process. Polym. 2016, 13, 1224–1229. [Google Scholar] [CrossRef]
- Hsiao, C.-P.; Wu, C.-C.; Liu, Y.-H.; Yang, Y.-W.; Cheng, Y.-C.; Palumbo, F.; Camporeale, G.; Favia, P.; Wu, J.-S. Aerosol-Assisted Plasma Deposition of Biocomposite Coatings: Investigation of Processing Conditions on Coating Properties. IEEE Trans. Plasma Sci. 2016, 44, 3091–3098. [Google Scholar] [CrossRef]
- Moreno-Couranjou, M.; Mauchauffé, R.; Bonot, S.; Detrembleur, C.; Choquet, P. Anti-biofouling and antibacterial surfaces: Via a multicomponent coating deposited from an up-scalable atmospheric-pressure plasma-assisted CVD process. J. Mater. Chem. B 2018, 6, 614–623. [Google Scholar] [CrossRef]
- Czuba, U.; Quintana, R.; Lassaux, P.; Bombera, R.; Ceccone, G.; Bañuls-Ciscar, J.; Moreno-Couranjou, M.; Detrembleur, C.; Choquet, P. Anti-biofouling activity of Ranaspumin-2 bio-surfactant immobilized on catechol-functional PMMA thin layers prepared by atmospheric plasma deposition. Colloids Surf. B Biointerfaces 2019, 178, 120–128. [Google Scholar] [CrossRef]
- O’Neill, L.; Dobbyn, P.; Kulkarni, M.; Pandit, A. Wound healing using plasma modified collagen. Clin. Plasma Med. 2018, 12, 23–32. [Google Scholar] [CrossRef]
- O’Neill, L.; O’Sullivan, D.; Fourkas, M.; Tartaglia, J. Evaluation of the J-Plasma Electrosurgical Device Combined with Nebulized Collagen for Burn Healing in Rodents. Plasma Med. 2018, 8, 365–377. [Google Scholar] [CrossRef] [Green Version]
- O’sullivan, D.; McArdle, H.; O’Reilly, J.A.; O’Kennedy, R.J.; Forster, R.; O’Neill, L. Plasma deposition of collagen for cell-culture applications. Plasma Process. Polym. 2020, 17, 1900147. [Google Scholar] [CrossRef]
- Liu, Y.H.; Yang, C.H.; Lin, T.R.; Cheng, Y.C. Using aerosol-assisted atmospheric-pressure plasma to embed proteins onto a substrate in one step for biosensor fabrication. Plasma Process. Polym. 2018, 15, 1800001. [Google Scholar] [CrossRef]
- Barletta, F.; Liguori, A.; Leys, C.; Colombo, V.; Gherardi, M.; Nikiforov, A. Novel method for NH-rich coatings engineering by means of aerosol assisted atmospheric pressure plasma deposition. Mater. Lett. 2018, 214, 76–79. [Google Scholar] [CrossRef]
- Palumbo, F.; Treglia, A.; Lo Porto, C.; Fracassi, F.; Baruzzi, F.; Frache, G.; El Assad, D.; Pistillo, B.R.; Favia, P. Plasma-Deposited Nanocapsules Containing Coatings for Drug Delivery Applications. ACS Appl. Mater. Interfaces 2018, 10, 35516–35525. [Google Scholar] [CrossRef] [PubMed]
- Lo Porto, C.; Palumbo, F.; Palazzo, G.; Favia, P. Direct plasma synthesis of nano-capsules loaded with antibiotics. Polym. Chem. 2017, 8, 1746–1749. [Google Scholar] [CrossRef]
- Lo Porto, C.; Palumbo, F.; Buxadera-Palomero, J.; Canal, C.; Jelinek, P.; Zajickova, L.; Favia, P. On the plasma deposition of vancomycin-containing nano-capsules for drug-delivery applications. Plasma Process. Polym. 2018, 15, 1700232. [Google Scholar] [CrossRef]
- Lo Porto, C.; Palumbo, F.; Fracassi, F.; Barucca, G.; Favia, P. On the formation of nanocapsules in aerosol-assisted atmospheric-pressure plasma. Plasma Process. Polym. 2019, 16, 1900116. [Google Scholar] [CrossRef]
- Chen, X.; Lo Porto, C.; Chen, Z.; Merenda, A.; Allioux, F.M.; d’Agostino, R.; Magniez, K.; Dai, X.J.; Palumbo, F.; Dumée, L.F. Single step synthesis of Janus nano-composite membranes by atmospheric aerosol plasma polymerization for solvents separation. Sci. Total Environ. 2018, 645, 22–33. [Google Scholar] [CrossRef]
- Mertz, G.; Delmée, M.; Bardon, J.; Martin, A.; Ruch, D.; Fouquet, T.; Garreau, S.; Airoudj, A.; Marguier, A.; Ploux, L.; et al. Atmospheric pressure plasma co-polymerization of two acrylate precursors: Toward the control of wetting properties. Plasma Process. Polym. 2018, 15, 1800073. [Google Scholar] [CrossRef]
- Duran, I.; Profili, J.; Stafford, L.; Laroche, G. Unveiling the origin of the anti-fogging performance of plasma-coated glass: Role of the structure and chemistry of siloxane precursors. Prog. Org. Coat. 2020, 141, 105401. [Google Scholar] [CrossRef]
- Durán, I.R.; Profili, J.; Stafford, L.; Laroche, G. Beyond microelectronics with 1,3,5,7-tetramethylcyclotetrasiloxane: A promising molecule for anti-fogging coatings. Mater. Chem. Phys. 2020, 242, 122508. [Google Scholar] [CrossRef]
- Jalaber, V.; Del Frari, D.; De Winter, J.; Mehennaoui, K.; Planchon, S.; Choquet, P.; Detrembleur, C.; Moreno-Couranjou, M. Atmospheric aerosol assisted pulsed plasma polymerization: An environmentally friendly technique for tunable catechol-bearing thin films. Front. Chem. 2019, 7, 183. [Google Scholar] [CrossRef] [PubMed]
- Boscher, N.D.; Duday, D.; Heier, P.; Heinze, K.; Hilt, F.; Choquet, P. Plasma Polymer Membranes for Immobilising Metalloporphyrins. Plasma Process. Polym. 2013, 10, 336–344. [Google Scholar] [CrossRef]
- Francescangeli, A.; Palumbo, F.; d’Agostino, R.; Defranoux, C. Pulsed plasma deposition from vinyltrimethylsilane/oxygen mixtures. Plasma Process. Polym. 2009, 6, 132–138. [Google Scholar] [CrossRef]
- Tatoulian, M.; Arefi-Khonsari, F.; Tatoulian, L.; Amouroux, J.; Borra, J.P. Deposition of poly(acrylic acid) films by electrohydrodynamic atomization in postdischarge at atmospheric pressure in air. Chem. Mater. 2006, 18, 5860–5863. [Google Scholar] [CrossRef]
- Donegan, M.; Dowling, D.P. Protein adhesion on water stable atmospheric plasma deposited acrylic acid coatings. Surf. Coat. Technol. 2013, 234, 53–59. [Google Scholar] [CrossRef]
- Carton, O.; Salem, D.B.; Pulpytel, J.; Arefi-Khonsari, F. Improvement of the water stability of plasma polymerized acrylic acid/MBA coatings deposited by atmospheric pressure air plasma jet. Plasma Chem. Plasma Process. 2015, 35, 819–829. [Google Scholar] [CrossRef]
- Stallard, C.P.; Solar, P.; Biederman, H.; Dowling, D.P. Deposition of Non-Fouling PEO-Like Coatings Using a Low Temperature Atmospheric Pressure Plasma Jet. Plasma Process. Polym. 2016, 13, 241–252. [Google Scholar] [CrossRef]
- Coclite, A.M.; Milella, A.; Palumbo, F.; Fracassi, F.; D’Agostino, R. Chemical and morphological characterization of low-k dielectric films deposited from hexamethyldisiloxane and ethylene RF Glow discharges. Plasma Process. Polym. 2010, 7, 1022–1029. [Google Scholar] [CrossRef]
- Wei, G.; Varghese, S.; Beaman, K.; Vasilyeva, I.; Mendiola, T.; Carswell, A.; Fillmore, D.; Lu, S. A comprehensive study on nanomechanical properties of various SiO 2-based dielectric films. In Proceedings of the WMED 2010—8th IEEE Workshop on Microelectronics and Electron Devices, Boise, ID, USA, 16 April 2010. [Google Scholar]
- Creatore, M.; Palumbo, F.; D’Agostino, R.; Fayet, P. RF plasma deposition of SiO2-like films: Plasma phase diagnostics and gas barrier film properties optimisation. Surf. Coat. Technol. 2001, 142, 163–168. [Google Scholar] [CrossRef]
- Palumbo, F.; D’Agostino, R.; Fracassi, F.; Laera, S.; Milella, A.; Angelini, E.; Grassini, S. On low pressure plasma processing for metal protection. Plasma Process. Polym. 2009, 6, S684–S689. [Google Scholar] [CrossRef]
- Di Mundo, R.; Palumbo, F.; D’Agostino, R. Nanotexturing of polystyrene surface in fluorocarbon plasmas: From sticky to slippery superhydrophobicity. Langmuir 2008, 24, 5044–5051. [Google Scholar] [CrossRef] [PubMed]
- Ellinas, K.; Tserepi, A.; Gogolides, E. Superhydrophobic, passive microvalves with controllable opening threshold: Exploiting plasma nanotextured microfluidics for a programmable flow switchboard. Microfluid. Nanofluid. 2014, 17, 489–498. [Google Scholar] [CrossRef]
- Garzia Trulli, M.; Claes, N.; Pype, J.; Bals, S.; Baert, K.; Terryn, H.; Sardella, E.; Favia, P.; Vanhulsel, A. Deposition of aminosilane coatings on porous Al 2 O 3 microspheres by means of dielectric barrier discharges. Plasma Process. Polym. 2017, 14, 1600211. [Google Scholar] [CrossRef]
- Lee, H.-T.; Lin, L.-H. Waterborne Polyurethane/Clay Nanocomposites: Novel Effects of the Clay and Its Interlayer Ions on the Morphology and Physical and Electrical Properties. Macromolecules 2006, 39, 6133–6141. [Google Scholar] [CrossRef]
- Wang, Y.; Lim, S.; Luo, J.L.; Xu, Z.H. Tribological and corrosion behaviors of Al2O3/polymer nanocomposite coatings. Wear 2006, 260, 976–983. [Google Scholar] [CrossRef]
- Du, X.W.; Fu, Y.S.; Sun, J.; Han, X.; Liu, J. Complete UV emission of ZnO nanoparticles in a PMMA matrix. Semicond. Sci. Technol. 2006, 21, 1202–1206. [Google Scholar] [CrossRef]
- Chau, J.L.H.; Tung, C.T.; Lin, Y.M.; Li, A.K. Preparation and optical properties of titania/epoxy nanocomposite coatings. Mater. Lett. 2008, 62, 3416–3418. [Google Scholar] [CrossRef]
- Bozzi, A.; Yuranova, T.; Kiwi, J. Self-cleaning of wool-polyamide and polyester textiles by TiO2-rutile modification under daylight irradiation at ambient temperature. J. Photochem. Photobiol. A Chem. 2005, 172, 27–34. [Google Scholar] [CrossRef]
- Ma, C.-C.M.; Chen, Y.-J.; Kuan, H.-C. Polystyrene nanocomposite materials—Preparation, mechanical, electrical and thermal properties, and morphology. J. Appl. Polym. Sci. 2006, 100, 508–515. [Google Scholar] [CrossRef]
- Boccaccini, A.R.; Erol, M.; Stark, W.J.; Mohn, D.; Hong, Z.; Mano, J.F. Polymer/bioactive glass nanocomposites for biomedical applications: A review. Compos. Sci. Technol. 2010, 70, 1764–1776. [Google Scholar] [CrossRef] [Green Version]
- Satarkar, N.S.; Biswal, D.; Hilt, J.Z. Hydrogel nanocomposites: A review of applications as remote controlled biomaterials. Soft Matter 2010, 6, 2364–2371. [Google Scholar] [CrossRef]
- Profili, J.; Levasseur, O.; Koronai, A.; Stafford, L.; Gherardi, N. Deposition of nanocomposite coatings on wood using cold discharges at atmospheric pressure. Surf. Coat. Technol. 2017, 309, 729–737. [Google Scholar] [CrossRef]
- Fanelli, F.; Mastrangelo, A.M.; De Vietro, N.; Fracassi, F. Preparation of multifunctional superhydrophobic nanocomposite coatings by aerosol-assisted atmospheric cold plasma deposition. Nanosci. Nanotechnol. Lett. 2015, 7, 84–88. [Google Scholar] [CrossRef]
- Fanelli, F.; Fracassi, F. Aerosol-assisted atmospheric pressure cold plasma deposition of organic-inorganic nanocomposite coatings. Plasma Chem. Plasma Process. 2014, 34, 473–487. [Google Scholar] [CrossRef]
- Mao, C.; Liu, A.; Cao, B. Virus-Based Chemical and Biological Sensing. Angew. Chem. Int. Ed. 2009, 48, 6790–6810. [Google Scholar] [CrossRef] [Green Version]
- Magliulo, M.; Mallardi, A.; Mulla, M.Y.; Cotrone, S.; Pistillo, B.R.; Favia, P.; Vikholm-Lundin, I.; Palazzo, G.; Torsi, L. Electrolyte-Gated Organic Field-Effect Transistor Sensors Based on Supported Biotinylated Phospholipid Bilayer. Adv. Mater. 2013, 25, 2090–2094. [Google Scholar] [CrossRef]
- Lisboa, P.; Villiers, M.B.; Brakha, C.; N Marche, P.; Valsesia, A.; Colpo, P.; Rossi, F. Fabrication of Bio-Functionalised Polypyrrole Nanoarrays for Bio-Molecular Recognition. Micro Nanosyst. 2011, 3, 83–89. [Google Scholar] [CrossRef] [Green Version]
- Hetrick, E.M.; Schoenfisch, M.H. Reducing implant-related infections: Active release strategies. Chem. Soc. Rev. 2006, 35, 780–789. [Google Scholar] [CrossRef] [PubMed]
- Heuts, J.; Salber, J.; Goldyn, A.M.; Janser, R.; Möller, M.; Klee, D. Bio-functionalized star PEG-coated PVDF surfaces for cytocompatibility-improved implant components. J. Biomed. Mater. Res. Part A 2010, 92, 1538–1551. [Google Scholar] [CrossRef] [PubMed]
- Mohorčič, M.; Jerman, I.; Zorko, M.; Butinar, L.; Orel, B.; Jerala, R.; Friedrich, J. Surface with antimicrobial activity obtained through silane coating with covalently bound polymyxin B. J. Mater. Sci. Mater. Med. 2010, 21, 2775–2782. [Google Scholar] [CrossRef] [PubMed]
- Faure, E.; Falentin-Daudré, C.; Lanero, T.S.; Vreuls, C.; Zocchi, G.; Van De Weerdt, C.; Martial, J.; Jérôme, C.; Duwez, A.-S.; Detrembleur, C. Functional Nanogels as Platforms for Imparting Antibacterial, Antibiofilm, and Antiadhesion Activities to Stainless Steel. Adv. Funct. Mater. 2012, 22, 5271–5282. [Google Scholar] [CrossRef]
- Vreuls, C.; Zocchi, G.; Vandegaart, H.; Faure, E.; Detrembleur, C.; Duwez, A.S.; Martial, J.; Van De Weerdt, C. Biomolecule-based antibacterial coating on a stainless steel surface: Multilayer film build-up optimization and stability study. Biofouling 2012, 28, 395–404. [Google Scholar] [CrossRef]
- Heyse, P.; Roeffaers, M.B.J.; Paulussen, S.; Hofkens, J.; Jacobs, P.A.; Sels, B.F. Protein immobilization using atmospheric-pressure dielectric-barrier discharges: A route to a straightforward manufacture of bioactive films. Plasma Process. Polym. 2008, 5, 186–191. [Google Scholar] [CrossRef]
- Porto, C.L.; Palumbo, F.; Treglia, A.; Camporeale, G.; Favia, P. Aerosol assisted atmopheric pressure PE-CVD of drug containing nano-capsules. Jpn. J. Appl. Phys. 2019, 59, SA0801. [Google Scholar] [CrossRef]
Coating Category | Reactor Set Up | Feed | Application | Ref. |
---|---|---|---|---|
perovskite | Microwave atmospheric plasma | La(NO3)3, Sr(NO3)2, Mn(NO3)2 and glycine | Electrochemical, magnetic, catalytic, gas separation, sensor and superconducting applications | [31] |
Ceria-like | Plasma jet | cerium acetate | Corrosion protection | [32] |
Organic coating COOH rich | Plasma jet | Acrylic acid | Wettable, good adhesive and gas barrier characteristics | [33] |
Silica-like | DBD planar | TEOS, GLYMO, MEMO, PTMO in aerosol | Barrier coating | [34] |
Bio-composite coating | Pilot scale atmospheric pressure plasma reactor | Cetalkonium chloride, Benzalkonium chloride and Cetyl pyridinium chloride in PEG or Acrylic acid (aerosol) | Active composite coating, drug delivery | [35] |
Organic coating COOH rich | DBD planar | Acrylic acid (aerosol) | Functional coating | [36] |
Organic coating | DBD planar | 22 different organic precursors (aerosol) | Fundamental study | [37] |
Silica-like | DBD planar | PDMS, HMDSO, TMDSO(aerosol) | Packaging, biomedical, automotive, microelectronic | [38] |
Fluorocarbon coating | DBD planar | Fluorocarbon (aerosol) | Hydrophobic coating on PET fabrics | [39] |
Silica-like | DBD planar | HMDSO (aerosol) | Anticorrosion coating | [40] |
Organic coatings | DBD planar | AA or OCTMS (aerosol) | Functional coating | [41] |
Organic coatings | Plasma jet | Z-TOMCATS and heptadecafluorodecylacrylate | Fundamental study | [42] |
Organic coatings | Atmospheric pressure plasma | PCL diol (aerosol) | Biodegradable polymer for packaging or medical sutures. | [43] |
Fluorocarbon coating | Plasma jet | HDFDA (aerosol) | fundamental | [44] |
Hybrid organic/inorganic | DBD planar | AlCeO3 NPs in HMDSO/ethanol (aerosol) | Anticorrosive coating | [45] |
Silicone-like | Plasma jet | TEOS, HMDSO (aerosol) | Hydrophobic coating | [46] |
PEG-like | Atmospheric pressure plasma | TEGDME (aerosol) | Antibiofilm coating | [47] |
Nano bio-composite | DBD planar | Acetylene (gas) or pyrrole (vapor, bubbler) + GOx or lipase or allophycocyanin or alkaline phosphathase in water (aerosol) | Bioactive coating | [48] |
Fluorocarbon coating | Pin corona discharge | HDFD (aerosol) | Hydrophobic coating | [49] |
Hybrid organic/inorganic | plasma jet | TiO2 in TMOS/alcohol (aerosol) | Anti-wear coatings | [50] |
Hybrid organic/inorganic | DBD planar, remote atomization | lanthanide-containing coordination polymer particles from the [Tb2-xYx(C8H4O4)3(H2O)4]N family in HMDSO/ethanol (aerosol) | Luminescent coating | [51] |
Organic coating PEG-like | DBD planar | Lactic acid or TEGDME (aerosol) | Biodegradable non-fouling | [52] |
Nano bio-composite | DBD planar | Acetominophen containing/MAA EGDMA | Drug delivery | [53] |
Organic coating PEG-like | DBD planar | TEGDME (aerosol) | Non-fouling | [54] |
Organic coating | DBD planar | Anhydride methacrylic (aerosol) | Biocompatible and biodegradable coating | [55] |
Organic coating | DBD planar | Ethylene (gas) + water (aerosol) | Functional coating | [56] |
Hybrid organic/inorganic | DBD planar | ZnO NPs in n-octane (aerosol) | Photocatalytic and self-cleaning | [57] |
PEG-like | DBD planar | PCL diol (a/m) | Biodegradable for biomedical | [58] |
Nano bio-composite | DBD planar | Ethylene (gas) + lysozyme in water (aerosol) | Antibacterial coating | [59] |
Hybrid organic/inorganic | DBD planar | TiO2 NP in HMDSO (aerosol) | Self-cleaning super hydrophilic layers. | [60] |
Hybrid organic/inorganic | DBD planar | TiO2 NP in water (aerosol)+ HMDSO(bubbler) | Self-cleaning super hydrophilic layers. | [61] |
Hybrid organic/inorganic | Plasma jet | acrylic acid (bubbler) + Ag NPs in EtOH (aerosol) | Antibacterial coating | [62] |
Nano bio-composite | DBD planar | Ethylene (gas) + vancomycin in water (aerosol) | Free standing antibiotic coating | [63] |
Nano bio-composite | DBD planar | Ethylene (gas) + lysozyme in water (aerosol) | Antibacterial coating | [64] |
Organic coating | DBD planar | L-DOPA in VTMOS (aerosol) | Binding of nanoparticles | [65] |
Organic coating | DBD planar | L-DOPA in Methacrylic acid (aerosol) | Functional coating | [66] |
Organic coating | Plasma jet | Collagen in water (aerosol) | Plasma medicine, burn treatment | [67,68,69] |
Nano bio-composite | DBD planar | Lysozyme in water (aerosol) + ethylene (gas) | Biosensor | [70] |
Organic coating | DBD planar | N,N’-methylenebisacrylamide (aerosol) | Amine/amide-rich coatings with good biocompatibility | [71] |
Nano bio-composite | DBD planar | Ethylene (gas) + gentamicin water (aerosol) | Antibacterial coating | [72] |
Nano bio-composite | DBD planar | Ethylene (gas) + vancomycin in water (aerosol) | Antibiotic coating/nanocapsules | [73,74,75] |
Hybrid organic/inorganic | DBD planar | POSS NPs in HMDSO (aerosol) | Selective liquid diffusion membranes | [76] |
Method | Type of Coating | Advantages | Disadvantages | |
---|---|---|---|---|
I | a | Single component | -suitable for deposition of single-phase coatings from one or more monomers -solution of non-volatile or solid monomers feasible | -not suitable for nanocomposite coatings |
b | Nanocomposite | -good for deposition of nanocomposite coatings -one atomizer can feed the two (or more) film components at once -solution of non-volatile or solid monomers feasible | -different aerosol solution necessary to change coating composition | |
II | Nanocomposite | -good for deposition of nanocomposite coatings -solution of non-volatile or solid monomers feasible | -two independent feed sources necessary |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Palumbo, F.; Lo Porto, C.; Fracassi, F.; Favia, P. Recent Advancements in the Use of Aerosol-Assisted Atmospheric Pressure Plasma Deposition. Coatings 2020, 10, 440. https://doi.org/10.3390/coatings10050440
Palumbo F, Lo Porto C, Fracassi F, Favia P. Recent Advancements in the Use of Aerosol-Assisted Atmospheric Pressure Plasma Deposition. Coatings. 2020; 10(5):440. https://doi.org/10.3390/coatings10050440
Chicago/Turabian StylePalumbo, Fabio, Chiara Lo Porto, Francesco Fracassi, and Pietro Favia. 2020. "Recent Advancements in the Use of Aerosol-Assisted Atmospheric Pressure Plasma Deposition" Coatings 10, no. 5: 440. https://doi.org/10.3390/coatings10050440
APA StylePalumbo, F., Lo Porto, C., Fracassi, F., & Favia, P. (2020). Recent Advancements in the Use of Aerosol-Assisted Atmospheric Pressure Plasma Deposition. Coatings, 10(5), 440. https://doi.org/10.3390/coatings10050440