Surface Grain Refinement of 304L Stainless Steel by Combined Severe Shot Peening and Reversion Annealing Treatment
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
- Grain size depended on annealing temperature and duration. It decreased with decreasing RAT temperature and duration. The surface layer of the 304L steel could be refined to 500 nm by the parameters used in this study.
- Air blast SP using 0.7 MPa pressure and 30 min could elevate the microhardness to more than 500 HV. Although the surface layers of SPed+annealed specimens were not as hard as the SPed specimens due to the reversion of α′ martensite during annealing, they still exhibited considerable hardness enhancement because of grain refinement. The specimen annealed at 700 °C for 30 s reached a peak hardness of close to 400 HV in its surface layer.
- SP induced α′ martensite transformation degraded the corrosion resistance of the 304L steel in H2SO4 solution, however SPed+annealed specimens had higher corrosion resistance in comparison with that treated by SP only due to the absence of α′ martensite.
Author Contributions
Funding
Conflicts of Interest
References
- He, Y.; Yoo, K.B.; Ma, H.; Shin, K. Study of the austenitic stainless steel with gradient structured surface fabricated via shot peening. Mater. Let. 2018, 215, 187–190. [Google Scholar] [CrossRef]
- Maleki, E.; Unal, O. Shot peening process effects on metallurgical and mechanical properties of 316 L Steel via: Experimental and neural network modeling. Met. Mater. Int. (in press). [CrossRef]
- Yang, X.; Wang, X.; Ling, X.; Wang, D. Enhanced mechanical behaviors of gradient nano-grained austenite stainless steel by means of ultrasonic impact treatment. Results Phys. 2017, 7, 1412–1421. [Google Scholar] [CrossRef]
- Yang, X.; Ling, X.; Zhou, J. Optimization of the fatigue resistance of AISI 304 stainless steel by ultrasonic impact treatment. Int. J. Fatigue 2014, 61, 28–38. [Google Scholar] [CrossRef]
- Zhang, H.W.; Hei, Z.K.; Liu, G.; Lu, J.; Lu, K. Formation of nanostructured surface layer on AISI 304 stainless steel by means of surface mechanical attrition treatment. Acta Mater. 2003, 51, 1871–1881. [Google Scholar] [CrossRef]
- Wu, Y.; Sun, Z.; Brisset, F.; Baudin, T.; Helbert, A.L.; Retraint, D. In-situ EBSD investigation of thermal stability of a 316L stainless steel nanocrystallized by Surface Mechanical Attrition Treatment. Mater. Let. 2020, 263, 127249. [Google Scholar] [CrossRef]
- Mordyuk, B.N.; Prokopenko, G.I.; Vasylyev, M.A.; Iefimov, M.O. Effect of structure evolution induced by ultrasonic peening on the corrosion behavior of AISI-321 stainless steel. Mater. Sci. Eng. A 2007, 458, 253–261. [Google Scholar] [CrossRef]
- Lu, Z.; Shi, L.; Zhu, S.; Tang, Z.; Jiang, Y. Effect of high energy shot peening pressure on the stress corrosion cracking of the weld joint of 304 austenitic stainless steel. Mater. Sci. Eng. A 2015, 637, 170–174. [Google Scholar] [CrossRef]
- Balusamy, T.; Narayanan, T.S.N.S.; Ravichandran, K.; Park, I.S.; Lee, M.H. Influence of surface mechanical attrition treatment (SMAT) on the corrosion behaviour of AISI 304 stainless steel. Corros. Sci. 2013, 74, 332–344. [Google Scholar] [CrossRef]
- Brass, A.M.; Chene, J. Role of shot-peening on hydrogen embrittlement of a low-carbon steel and a 304 stainless steel. J. Mater. Sci. 1991, 26, 4517–4526. [Google Scholar] [CrossRef]
- Wang, Y.; Xie, H.; Zhou, Z.; Li, X.; Wu, W.; Gong, J. Effect of shot peening coverage on hydrogen embrittlement of a ferrite-pearlite steel. Int. J. Hydrogen Energy 2020, 45, 7169–7184. [Google Scholar] [CrossRef]
- Niinomi, M. Recent metallic materials for biomedical applications. Metall. Mater. Trans. A 2002, 33, 477–486. [Google Scholar] [CrossRef]
- Hedayati, A.; Najafizadeh, A.; Kermanpur, A.; Forouzan, F. The effect of cold rolling regime on microstructure and mechanical properties of AISI 304L stainless steel. J. Mater. Process. Tech. 2010, 210, 1017–1022. [Google Scholar] [CrossRef]
- Zheng, Z.J.; Gao, Y.; Gui, Y.; Zhu, M. Corrosion behaviour of nanocrystalline 304 stainless steel prepared by equal channel angular pressing. Corros. Sci. 2012, 54, 60–67. [Google Scholar] [CrossRef]
- Coleman, T.H.; West, D.R.F. Deformation-induced martensite and its reversion to austenite in an Fe–16Cr–12Ni alloy. Metals Tech. 1976, 3, 49–53. [Google Scholar] [CrossRef]
- Tomimura, K.; Takaki, S.; Tanimoto, S.; Tokunaga, Y. Optimal chemical composition in Fe–Cr–Ni alloys for ultra grain refining by reversion from deformation induced martensite. ISIJ Int. 1991, 31, 721–727. [Google Scholar] [CrossRef] [Green Version]
- Naghizadeh, M.; Mirzadeh, H. Microstructural evolutions during reversion annealing of cold-rolled AISI 316 austenitic stainless steel. Metall. Mater. Trans. A 2018, 49, 2248–2256. [Google Scholar] [CrossRef]
- Su, Y.; Song, R.; Wang, T.; Cai, H.; Wen, J.; Guo, K. Grain size refinement and effect on the tensile properties of a novel low-cost stainless steel. Mater. Let. 2020, 260, 126919. [Google Scholar] [CrossRef]
- Forouzan, F.; Najafizadeh, A.; Kermanpur, A.; Hedayati, A.; Surkialiabad, R. Production of nano/submicron grained AISI 304L stainless steel through the martensite reversion process. Mater. Sci. Eng. A 2010, 527, 7334–7339. [Google Scholar] [CrossRef]
- Qin, W.; Li, J.; Liu, Y.; Kang, J.; Zhu, L.; Shu, D.; Peng, P.; She, D.; Meng, D.; Li, Y. Effects of grain size on tensile property and fracture morphology of 316L stainless steel. Mater. Let. 2019, 254, 116–119. [Google Scholar] [CrossRef]
- Dehsorkhi, R.N.; Sabooni, S.; Karimzadeh, F.; Rezaeian, A.; Enayati, M.H. The effect of grain size and martensitic transformation on the wear behavior of AISI 304L stainless steel. Mater. Des. 2014, 64, 56–62. [Google Scholar] [CrossRef]
- Wang, Y.; Zhou, Z.; Wu, W.; Gong, J. Warm pre-strain: Strengthening the metasTable 304L austenitic stainless steel without compromising its hydrogen embrittlement resistance. Materials 2017, 10, 1331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- American Society of Testing Materials (ASTM). Standard Test Methods for Determining Average Grain Size; ASTM E112: West Conshohocken, PA, USA, 2013. [Google Scholar]
- Wu, Y.; Guelorget, B.; Sun, Z.; Déturche, R.; Retraint, D. Characterization of gradient properties generated by SMAT for a biomedical grade 316L stainless steel. Mater. Charact. 2019, 155, 109788. [Google Scholar] [CrossRef]
- Liu, L.; Li, Y.; Wang, F.H. Electrochemical corrosion behavior of nanocrystalline materials–A review. J. Mater. Sci. Technol. 2010, 26, 1–14. [Google Scholar] [CrossRef]
Specimen | Grain Size (nm) |
---|---|
700 °C-30 s-50 °C/s | 510 |
700 °C-120 s-50 °C/s | 850 |
700 °C-1200 s-50 °C/s | 5080 |
800 °C-30 s-50 °C/s | 1280 |
700 °C-2 s-10 °C/s | 440 |
700 °C-120 s-10 °C/s | 2250 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, X.; Qi, Z.; Zhou, Z.; Zhang, H.; Wu, W.; Wang, Y. Surface Grain Refinement of 304L Stainless Steel by Combined Severe Shot Peening and Reversion Annealing Treatment. Coatings 2020, 10, 470. https://doi.org/10.3390/coatings10050470
Wu X, Qi Z, Zhou Z, Zhang H, Wu W, Wang Y. Surface Grain Refinement of 304L Stainless Steel by Combined Severe Shot Peening and Reversion Annealing Treatment. Coatings. 2020; 10(5):470. https://doi.org/10.3390/coatings10050470
Chicago/Turabian StyleWu, Xuanpei, Zeyou Qi, Zhiling Zhou, Hongcheng Zhang, Weijie Wu, and Yanfei Wang. 2020. "Surface Grain Refinement of 304L Stainless Steel by Combined Severe Shot Peening and Reversion Annealing Treatment" Coatings 10, no. 5: 470. https://doi.org/10.3390/coatings10050470
APA StyleWu, X., Qi, Z., Zhou, Z., Zhang, H., Wu, W., & Wang, Y. (2020). Surface Grain Refinement of 304L Stainless Steel by Combined Severe Shot Peening and Reversion Annealing Treatment. Coatings, 10(5), 470. https://doi.org/10.3390/coatings10050470