Low Friction at the Nanoscale of Hydrogenated Fullerene-Like Carbon Films
Abstract
:1. Introduction
2. Experimental
2.1. Sample Preparation
2.2. Scanning Probe Microscopy
2.3. Force Calibration
2.4. TEM Characterization
2.5. Raman Spectroscopy
2.6. Extract from Wear Debris
3. Results
3.1. The Binary Structure via TEM and Raman Spectra
3.2. Friction Experiments at the Microscale
3.3. Friction Experiments at the Nanoscale
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Esmeryan, K.D.; Lazarov, Y.; Stamenov, G.S.; Chaushev, T.A. When condensed matter physics meets biology: Does superhydrophobicity benefiting the cryopreservation of human spermatozoa? Cryobiology 2020, 92, 263–266. [Google Scholar] [CrossRef]
- Zhang, Y.F.; Polychronopoulou, K.; Humood, M.; Polycarpou, A.A. High temperature nanotribology of ultra-thin hydrogenated amorphous carbon coatings. Carbon 2017, 123, 112–121. [Google Scholar] [CrossRef]
- Kawai, S.; Benassi, A.; Gnecco, E.; Söde, H.; Pawlak, R.; Feng, X.L.; Müllen, K.; Passerone, D.; Pignedoli, C.A.; Ruffieux, P.; et al. Superlubricity of graphene nanoribbons on gold surfaces. Science 2016, 351, 957–961. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, X.H.; Gao, L.; Yao, Q.Z.; Li, Q.Y.; Zhang, M.; Xie, X.M.; Qiao, S.; Wang, G.; Ma, T.B.; Di, Z.F.; et al. Robust ultra-low-friction state of graphene via moiré superlattice confinement. Nat. Commun. 2016, 7, 13204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robertson, J. Diamond-like amorphous carbon. Mater. Sci. Eng. R Rep. 2002, 37, 129–281. [Google Scholar] [CrossRef] [Green Version]
- Wolloch, M.; Levita, G.; Restuccia, P.; Righi, M.C. Interfacial charge density and its connection to adhension and frictional forces. Phys. Rev. Lett. 2018, 121, 026804. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.L.; Xia, Y.B.; Wang, L.J.; Zhang, W.L. The electrical properties of diamond-like carbon film/D263 glass composite for the substrate of micro-strip gas chamber. Diam. Relat. Mater. 2003, 12, 1544–1547. [Google Scholar] [CrossRef]
- Donnet, C.; Erdemir, A. Tribology of Diamond-Like Carbon Films; Springer: New York, NY, USA, 2008. [Google Scholar]
- Erdemir, A. The role of hydrogen in tribological properties of diamond-like carbon films. Surf. Coat. Technol. 2001, 146–147, 292–297. [Google Scholar] [CrossRef]
- Ma, T.B.; Hu, Y.Z.; Wang, H. Molecular dynamics simulation of shear-induced graphitization of amorphous carbon films. Carbon 2009, 47, 1953–1957. [Google Scholar] [CrossRef]
- Chhowalla, M.; Amaratunga, G.A.J. Thin films of fullerene-like MoS2 nanoparticles with ultra-low friction and wear. Nature 2000, 407, 164–167. [Google Scholar] [CrossRef]
- Rapoport, L.; Lvovsky, M.; Lapsker, I.; Leshchinsky, W.; Volovik, Y.; Feldman, Y.; Tenne, R. Friction and wear of bronze powder composites including fullerene-like WS2 nanoparticles. Wear 2001, 249, 149–156. [Google Scholar] [CrossRef]
- Cizaire, L.; Vacher, B.; Mogne, T.L.; Martin, J.M.; Rapoport, L.; Margolin, A.; Tenne, R. Mechanisms of ultra-low friction by hollow inorganic fullerene-like MoS2 nanoparticles. Surf. Coat. Technol. 2002, 160, 282–287. [Google Scholar] [CrossRef]
- André, B.; Gustavsson, F.; Svahn, F.; Jacobson, S. Performance and tribofilm formation of a low-friction coating incorporating inorganic fullerene like nano-particles. Sur. Coat. Technol. 2012, 206, 2325–2329. [Google Scholar] [CrossRef]
- Wang, C.B.; Yang, S.R.; Wang, Q.; Wang, Z.; Zhang, J.Y. Super-low friction and super-elastic hydrogenated carbon films originated from a unique fullerene-like nanostructure. Nanotechnology 2008, 19, 225709. [Google Scholar] [CrossRef]
- Wang, P.; Wang, X.; Liu, W.M.; Zhang, J.Y. Growth and structure of hydrogenated carbon films containing fullerene-like structure. J. Phys. D Appl. Phys. 2008, 41, 085401. [Google Scholar] [CrossRef]
- Kuzmany, H.; Pfeiffer, R.; Hulman, M.; Kramberger, C. Raman spectroscopy of fullerenes and fullerene–nanotube composites. Philos. Trans. R. Soc. Lond. A 2004, 362, 2375–2406. [Google Scholar] [CrossRef]
- Giessibl, F.J. Forces and frequency shifts in atomic-resolution dynamic-force microscopy. Phys. Rev. B 1997, 56, 16010–16015. [Google Scholar] [CrossRef] [Green Version]
- Pfeiffer, O.; Bennewitz, R.; Baratoff, A.; Meyer, E.; Grütter, P. Lateral-force measurements in dynamic force microscopy. Phys. Rev. B 2002, 65, 161403. [Google Scholar] [CrossRef]
- Ogletree, D.F.; Carpick, R.W.; Salmeron, M. Calibration of frictional forces in atomic force microscopy. Rev. Sci. Instrum. 1996, 67, 3298–3306. [Google Scholar] [CrossRef] [Green Version]
- Varenberg, M.; Etsion, I.; Halperin, G. An improved wedge calibration method for lateral force in atomic force microscopy. Rev. Sci. Instrum. 2003, 74, 3362–3367. [Google Scholar] [CrossRef]
- Bhushan, B. Nanotribology and Nanomechanics; Springer: New York, NY, USA, 2005. [Google Scholar]
- Meunier, C.; Alers, P.; Marot, L.; Stauffer, J.; Randall, N.; Mikhailov, S. Friction properties of ta-C and a-C:H coatings under high vacuum. Surf. Coat. Technol. 2005, 200, 1976–1981. [Google Scholar] [CrossRef]
- Fontaine, J.; Mogne, T.L.; Loubet, J.L.; Belin, M. Achieving superlow friction with hydrogenated amorphous carbon: Some key requirements. Thin Solid Films 2005, 482, 99–108. [Google Scholar] [CrossRef]
- Grill, A. Diamond-like carbon: State of the art. Diam. Relat. Mater. 1999, 8, 428–434. [Google Scholar] [CrossRef]
- Cui, L.C.; Lu, Z.B.; Wang, L.P. Probing the low-friction mechanism of diamond-like carbon by varying of sliding velocity and vacuum pressure. Carbon 2014, 66, 259–266. [Google Scholar] [CrossRef]
- Erdemir, A.; Eryilmaz, O.L.; Fenske, G. Synthesis of diamondlike carbon films with superlow friction and wear properties. J. Vac. Sci. Technol. A 2000, 18, 1987–1992. [Google Scholar] [CrossRef] [Green Version]
- Ferrari, A.C.; Robertson, J. Raman spectroscopy of amorphous, nanostructured, diamond–like carbon, and nanodiamond. Philos. Trans. R. Soc. Lond. A 2004, 362, 2477–2512. [Google Scholar] [CrossRef]
- Dennison, J.R.; Holtz, M.; Swain, G. Raman spectroscopy of carbon materials. Spectroscopy 1996, 11, 38–45. [Google Scholar]
- Ferreira, E.H.M.; Moutinho, M.V.O.; Stavale, F.; Lucchese, M.M.; Capaz, R.B.; Achete, C.A.; Jorio, A. Evolution of the Raman spectra from single-, few-, and many-layer graphene with increasing disorder. Phys. Rev. B 2010, 82, 125429. [Google Scholar] [CrossRef] [Green Version]
- Cançado, L.G.; Jorio, A.; Ferreira, E.H.M.; Stavale, F.; Achete, C.A.; Capaz, R.B.; Moutinho, M.V.O.; Lombardo, A.; Kulmala, T.S.; Ferrari, A.C. Quantifying defects in graphene via Raman spectroscopy at different excitation energies. Nano Lett. 2011, 11, 3190–3196. [Google Scholar] [CrossRef] [Green Version]
- Ferrari, A.C.; Robertson, J. Resonant Raman spectroscopy of disordered, amorphous, and diamondlike carbon. Phys. Rev. B 2001, 64, 075414. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Wang, C.B.; Wang, Z.; Zhang, J.Y.; He, D.Y. Fullerene nanostructure-induced excellent mechanical properties in hydrogenated amorphous carbon. Appl. Phys. Lett. 2007, 91, 141902. [Google Scholar] [CrossRef]
- Wang, C.B.; Yang, S.R.; Li, H.X.; Zhang, J.Y. Elastic properties of a-C:N:H films. J. Appl. Phys. 2007, 101, 013501. [Google Scholar] [CrossRef]
- Krishnamoorthy, K.; Veerapandian, M.; Yun, K.; Kim, S.-J. The chemical and structural analysis of graphene oxide with different degrees of oxidation. Carbon 2013, 53, 38–49. [Google Scholar] [CrossRef]
- Vollebregt, S.; Ishihara, R.; Tichelaar, F.D.; Hou, Y.; Beenakker, C.I.M. Influence of the growth temperature on the first and second-order Raman band ratios and widths of carbon nanotubes and fibers. Carbon 2012, 50, 3542–3554. [Google Scholar] [CrossRef]
- Gupta, B.K.; Malshe, A.; Bhushan, B.; Subramaniam, V.V. Friction and wear properties of chemomechanically polished diamond films. J. Tribol. 1994, 116, 445–453. [Google Scholar] [CrossRef]
- Erdemir, A.; Donnet, C. Tribology of Diamond and Diamond-Like Carbon Films: An Overview; Wiley: London, UK, 2005. [Google Scholar]
- Tamor, M.A.; Vassell, W.C.; Carduner, K.R. Atomic constraint in hydrogenated “diamond-like” carbon. Appl. Phys. Lett. 1991, 58, 592–594. [Google Scholar] [CrossRef]
- Esmeryan, K.D.; Castano, C.E.; Bressler, A.H.; Abolghasemibizaki, M.; Fergusson, C.P.; Roberts, A.; Mohammadi, R. Kinetically driven graphite-like to diamond-like carbon transformation in low temperature laminar diffusion flames. Diam. Relat. Mater. 2017, 75, 58–68. [Google Scholar] [CrossRef]
- Hellgren, N.; Johansson, M.P.; Hjörvarsson, B.; Broitman, E.; Östblom, M.; Liedberg, B.; Hultman, L.; Sundgren, J.E. Growth, structure, and mechanical properties of CNxHy films deposited by dc magnetron sputtering in N2/Ar/H2 discharges. J. Vac. Sci. Technol. A 2000, 18, 2349–2358. [Google Scholar] [CrossRef]
- Voevodin, A.A.; Jones, J.G.; Zabinski, J.S.; Czigány, Z.; Hultman, L. Growth and structure of fullerene-like CNx thin films produced by pulsed laser ablation of graphite in nitrogen. J. Appl. Phys. 2002, 92, 4980–4988. [Google Scholar] [CrossRef]
- Garcia, I.A.; Berasategui, E.G.; Bull, S.J.; Page, T.F.; Neidhardt, J.; Hultman, L.; Hellgren, N. How hard is fullerene-like CNx some observations from the nanoindentation response of a magnetron-sputtered coating. Philos. Mag. A 2002, 82, 2133–2147. [Google Scholar] [CrossRef]
- Palacio, J.F.; Bull, S.J.; Neidhardt, J.; Hultman, L. Nanoindentation response of high performance fullerene-like CNx. Thin Solid Films 2006, 494, 63–68. [Google Scholar] [CrossRef]
- Webb, R.P.; Kerford, M. The computer simulation of the scattering of fullerenes from a graphite surface: Energy partitioning and vibrational spectra. Nucl. Instrum. Methods Phys. Res. B 2001, 180, 32–36. [Google Scholar] [CrossRef]
- Bucholz, E.W.; Phillpot, S.R.; Sinnott, S.B. Molecular dynamics investigation of the lubrication mechanism of carbon nano-onions. Comput. Mater. Sci. 2012, 54, 91–96. [Google Scholar] [CrossRef]
- Pottuz, L.J.; Bucholz, E.W.; Matsumoto, N.; Phillpot, S.R.; Sinnott, S.B.; Ohmae, N.; Martin, J.M. Friction properties of carbon nano-onions from experiment and computer simulations. Tribol. Lett. 2010, 37, 75–81. [Google Scholar] [CrossRef]
- Cannara, R.J.; Brukman, M.J.; Cimatu, K.; Sumant, A.V.; Baldelli, S.; Carpick, R.W. Nanoscale friction varied by isotopic shifting of surface vibrational frequencies. Science 2007, 318, 780–783. [Google Scholar] [CrossRef] [PubMed] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Z.; Wang, Y.; Glatzel, T.; Hinaut, A.; Zhang, J.; Meyer, E. Low Friction at the Nanoscale of Hydrogenated Fullerene-Like Carbon Films. Coatings 2020, 10, 643. https://doi.org/10.3390/coatings10070643
Liu Z, Wang Y, Glatzel T, Hinaut A, Zhang J, Meyer E. Low Friction at the Nanoscale of Hydrogenated Fullerene-Like Carbon Films. Coatings. 2020; 10(7):643. https://doi.org/10.3390/coatings10070643
Chicago/Turabian StyleLiu, Zhao, Yongfu Wang, Thilo Glatzel, Antoine Hinaut, Junyan Zhang, and Ernst Meyer. 2020. "Low Friction at the Nanoscale of Hydrogenated Fullerene-Like Carbon Films" Coatings 10, no. 7: 643. https://doi.org/10.3390/coatings10070643
APA StyleLiu, Z., Wang, Y., Glatzel, T., Hinaut, A., Zhang, J., & Meyer, E. (2020). Low Friction at the Nanoscale of Hydrogenated Fullerene-Like Carbon Films. Coatings, 10(7), 643. https://doi.org/10.3390/coatings10070643