Multilayer-Structured Wood Electroless Cu–Ni Composite Coatings for Electromagnetic Interference Shielding
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Materials
2.2. Experimental Design
2.3. Preparation of Cu–Ni Composite Coatings
2.4. Surface Characterization
2.4.1. Laser Copolymerization Microscope
2.4.2. Scanning Electron Microscopy (SEM)
2.4.3. Electrical Property
2.4.4. Wettability
2.4.5. X-ray Photoelectron Spectroscopy (XPS) Analysis
2.4.6. Electromagnetic Shielding Effectiveness
3. Results
3.1. Surface Morphology
3.2. Cross-Section Morphology
3.3. Electrical Properties
3.4. The Hydrophobicity Performance
3.5. XPS Analysis
3.6. X-Ray Diffraction (XRD) Analysis
3.7. Electromagnetic Shielding Effectiveness
3.8. Enhanced Mechanism Analysis of Electromagnetic Shielding
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wang, G.Q.; Chen, X.D.; Duan, Y.P.; Liu, S.H. Electromagnetic properties of carbon black and barium titanate composite materials. J. Alloy. Compd. 2008, 454, 340–346. [Google Scholar] [CrossRef]
- Meena, R.S.; Bhattachrya, S.; Chatterjee, R. Development of “tuned microwave absorbers” using U-type hexaferrite. Mater. Des. 2010, 31, 3220–3226. [Google Scholar] [CrossRef]
- Shanenkov, I.; Sivkov, A.; Ivashutenko, A.; Zhuravlev, V.; Guo, Q.; Li, L.P.; Li, G.S.; Wei, G.D.; Han, W. Magnetite hollow microspheres with a broad absorption bandwidth of 11.9 GHz: Toward promising lightweight electromagnetic microwave absorption. Phys. Chem. Chem. Phys. 2017, 19, 19975–19983. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.C.; Li, G.; Yu, H.P.; Liu, Y.X. Hydrophobic modification of wood via surface-initiated ARGET ATRP of MMA. Appl. Surf. Sci. 2012, 258, 2529–2533. [Google Scholar] [CrossRef]
- Pan, Y.F.; Wang, X.; Huang, J.T. The preparation, characterization, and influence of multiple electroless nickel–phosphorus (Ni-P) composite coatings on poplar veneer. BioResources 2016, 11, 724–735. [Google Scholar] [CrossRef] [Green Version]
- Mohammed-Ziegler, I.; Tánczos, I.; Hórvölgyi, Z.; Agoston, B. Water-repellent acylated and silylated wood samples and their surface analytical characterization. Colloids Surf. A Physicochem. Eng. Asp. 2008, 319, 204–212. [Google Scholar] [CrossRef]
- Mai, C.; Militz, H. Modification of wood with silicon compounds. Treatment systems based on organic silicon compounds-a review. Wood Sci. Technol. 2004, 37, 453–461. [Google Scholar] [CrossRef]
- Li, J.; Yu, H.P.; Sun, Q.F.; Liu, Y.X.; Cui, Y.Z.; Lu, Y. Growth of TiO2 coating on wood surface using controlled hydrothermal method at low temperatures. Appl. Surf. Sci. 2010, 256, 5046–5050. [Google Scholar] [CrossRef]
- Sun, Q.F.; Yu, H.P.; Liu, Y.X.; Li, J.; Lu, Y.; Hunt, J.F. Improvement of water resistance and dimensional stability of wood through titanium dioxide coating. Holzforschung 2010, 64, 757–761. [Google Scholar] [CrossRef]
- Gu, L.B. Current status and application prospects of wood modification. China Wood Ind. 2012, 26, 1–6. [Google Scholar]
- Bakraji, E.H.; Salman, N.; Al-kassiri, H. Gamma-radiation-induced wood-plastic composites from Syrian tree species. Radiat. Phys. Chem. 2001, 61, 137–141. [Google Scholar] [CrossRef]
- Bakraji, E.H.; Salman, N.; Othman, I. Radiation-induced polymerization of acrylamide within Okoume (Aucoumea klaineana Pierre). Radiat. Phys. Chem. 2002, 64, 277–281. [Google Scholar] [CrossRef]
- Bakraji, E.H.; Salman, N. Properties of wood-plastic composites: Effect of inorganic additives. Radiat. Phys. Chem. 2003, 66, 49–53. [Google Scholar] [CrossRef]
- Ebner, M.; Petutschnigg, A.J. Potentials of thermally modified beech (Fagus sylvatica) wood for application in toy construction and design. Mater. Des. 2007, 28, 1753–1759. [Google Scholar] [CrossRef]
- Fujii, S.; Hamasaki, H.; Takeoka, H.; Tsuruoka, T.; Akamatsu, K.; Nakamura, Y. Electroless nickel plating on polymer particles. J. Colloid Interface Sci. 2014, 430, 47–55. [Google Scholar] [CrossRef]
- Li, J.; Wang, L.J.; Liu, H.B. A new process for preparing conducting wood veneers by electroless nickel plating. Surf. Coat. Technol. 2010, 204, 1200–1205. [Google Scholar] [CrossRef]
- Wang, L.J.; Li, J.; Liu, Y.X. Surface characteristics of electroless nickel plated electromagnetic shielding wood veneer. J. For. Res. 2005, 16, 233–236. [Google Scholar]
- Wang, L.J.; Liu, H.B. Electroless nickel plating on chitosan-modified wood veneer. Bioresources 2011, 6, 2035–2044. [Google Scholar] [CrossRef]
- Wang, L.J.; Li, J.; Liu, H.B. A simple process for electroless plating nickel-phosphorus film on wood veneer. Wood Sci. Technol. 2011, 45, 161–167. [Google Scholar] [CrossRef]
- Wang, L.J.; Li, J. Electromagnetic-shielding, wood-based materials created using a novel electroless copper plating process. Bioresources 2013, 8, 3414–3425. [Google Scholar] [CrossRef] [Green Version]
- Mondal, S.; Ghosh, S.; Ganguly, S.; Das, P.; Ravindren, R.; Sit, S.; Chakraborty, G.; Das, N.C. Highly conductive and flexible nano-structured carbon-based polymer nanocomposites with improved electromagnetic-interference-shielding performance. Mater. Res. Express 2017, 4, 105039. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, W.; Ding, X.D.; Yu, D. Multilayer-structured Ni-Co-Fe-P/polyaniline/polyimide composite fabric for robust electromagnetic shielding with low reflection characteristic. Chem. Eng. J. 2020, 380, 108–113. [Google Scholar] [CrossRef]
- Li, N.; Huang, G.W.; Li, Y.Q.; Xiao, H.M.; Feng, Q.P.; Hu, N.; Fu, S.Y. Enhanced microwave absorption performance of coated carbon nanotubes by optimizing the Fe3O4 nanocoating structure. ACS Appl. Mater. Interfaces 2017, 9, 2973–2983. [Google Scholar] [CrossRef] [PubMed]
- Sheng, A.; Ren, W.; Yang, Y.; Yan, D.X.; Duan, H.; Zhao, G.; Liu, Y.; Li, Z.M. Multilayer WPU conductive composites with controllable electro-magnetic gradient for absorption-dominated electromagnetic interference shielding. Compos. Part A 2020, 129, 105692. [Google Scholar] [CrossRef]
- Nagasawa, C.; Kumagai, Y.; Urabe, K.; Shinagawa, S. Electromagnetic shielding particleboard with nickel-plated wood particles. J. Porous Mater. 1999, 6, 247–254. [Google Scholar] [CrossRef]
- He, W.X.; Yu, H.Y.; Zhang, Y.Q.; Li, Z.Q.; Liu, B.; Jiang, M. Preparation and electrochemical properties of Ni(OH)2-carbon nanotube-reduced graphene oxide composites. Acta Mater. Compos. Sinica 2018, 35, 1921–1929. [Google Scholar] [CrossRef]
- Hui, B.; Li, J.; Wang, L.J. Effect of Temperature on Electroless Deposition of Ni-Cu-P Ternary Alloy on Birch Veneer. J. Northeast For. Univ. 2015, 43, 87–95. (In Chinese) [Google Scholar] [CrossRef]
- Moulder, J.F.; Stickle, W.F.; Sobol, P.E. Edited Handbook of X-ray Photoelectron Spectroscopy: Physical Electronics Division; Perkin-Elmer Corporation: Houston, TX, USA, 1992. [Google Scholar]
- Wu, J.; Huang, Q.A.; Zhang, H.; Yan, Z.Q. Electrocatalytic Activity for Hydrogen Evolution Reaction on Electrodeposited Ni-Ce-P Alloy. J. Wuhan Automot. Polytech. Univ. 1999, 21, 29–32. [Google Scholar]
- Li, Q.; Liang, C.L.; Lu, X.F.; Tong, Y.X.; Li, G.R. Ni@NiO core-shell nanoparticle tube arrays with enhanced supercapacitor performance. J. Mater. Chem. A 2015, 3, 6432–6439. [Google Scholar] [CrossRef]
- Hua, Z.S.; Yao, G.C.; Ma, J.; Zhang, Z.G.; Liang, L.S. XPS analysis of nickel layers on carbon fibers. Chin. J. Nonferrous Met. 2011, 21, 165–170. [Google Scholar]
- Lee, J.W.; Ahn, T.; Soundararajan, D.; Koc, J.M.; Kim, J.D. Non-aqueous approach to the preparation of reduced graphene oxide/a-Ni(OH)2 hybrid composites and their high capacitance behavior. Chem. Commun. 2011, 47, 6305–6307. [Google Scholar] [CrossRef] [PubMed]
- Nesbitt, H.W.; Legrand, D.; Bancroft, G.M. Interpretation of Ni2p XPS spectra of Ni conductors and Ni insulators. Phys. Chem. Min. 2000, 27, 357–366. [Google Scholar] [CrossRef]
- Liu, H.; Guo, R.X.; Liu, Y.; Thompson, G.E.; Liu, Z. The effect of processing gas on corrosion performance of electroless Ni–W–P coatings treated by laser. Surface Coat. Technol. 2012, 206, 3350–3359. [Google Scholar] [CrossRef]
- Guo, H.; Liu, X.; Hou, Y.; Xie, Q.; Wang, L.; Geng, H.; Peng, D.L. Magnetically separable and recyclable urchin-like Co-P hollow nanocomposites for catalytic hydrogen generation. J. Power Sources 2014, 260, 100–108. [Google Scholar] [CrossRef]
- Greczynsky, G.; Hultman, L. X-ray photoelectron spectroscopy: Towards reliable binding energy referencing. Prog. Mater. Sci. 2020, 107, 100591. [Google Scholar] [CrossRef]
- Greczynsky, G.; Hultman, L. Compromising science by ignorant instrument calibration-need to revisit half a century of published XPS data. Angew. Chem. 2019, 132, 5034–5038. [Google Scholar] [CrossRef]
- Liu, C.L.; Zhang, G.; Yu, L.; Qu, J.H.; Liu, H.J. Oxygen doping to optimize atomic hydrogen binding energy on NiCoP for highly effcient hydrogen evolution. Small 2018, 14, 1800421. [Google Scholar] [CrossRef]
- Guo, T.C.; Wang, Y.; Huang, J.T. Studies of electroless copper plating on poplar veneer. Bioresources 2016, 11, 6920–6931. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.J.; Li, J.; Liu, Y.X. Study on Preparation of Electromagnetic Shielding Composite by Electroless Copper Plating on Fraxinus Mandshurica Veneer. J. Mater. Eng. 2008, 4, 56–60. [Google Scholar]
- Tao, Y.B.; Li, P.; Shi, S.Q. Effects of carbonization temperature and component ratio on electromagnetic interference shielding effectiveness of woodceramics. Materials 2016, 9, 540. [Google Scholar] [CrossRef]
- Ha, J.H.; Hong, S.K.; Ryu, J.K.; Bae, J.; Park, S.H. Development of multi-functional graphene polymer composites having electromagnetic interference shielding and de-icing properties. Polymers 2019, 11, 2101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yousefi, N.; Sun, X.Y.; Lin, X.Y.; Shen, X.; Jia, J.J.; Zhang, B.; Tang, B.Z.; Chan, M.S.; Kim, J.K. Highly aligned graphene/polymer nanocomposites with excellent dielectric properties for high-performance electromagnetic interference shielding. Adv. Mater. 2014, 26, 5480–5487. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.H.; Cao, Q.; Bi, H.; Liang, C.Y.; Yuan, K.P.; She, W.; Yang, Y.; Che, R. CoNi@SiO2@TiO2 and CoNi@Air@TiO2 microspheres with strong wideband microwave absorption. Adv. Mater. 2016, 28, 486–490. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Liu, X.F.; Nie, X.Y.; Yang, W.W.; Wang, Y.D.; Yu, R.H.; Shui, J. Multifunctional organic-inorganic hybrid aerogel for self-cleaning, heat-insulating, and highly efficient microwave absorbing material. Adv. Func. Mater. 2019, 29, 1807624. [Google Scholar] [CrossRef]
- Cui, C.H.; Yan, D.X.; Pang, H.; Jia, L.C.; Bao, Y.; Jiang, X.; Li, Z.M. Towards Efficient Electromagnetic Interference Shielding Performance for Polyethylene Composites by Structuring Segregated Carbon Black/Graphite Networks. Chin. J. Polym. Sci. 2016, 34, 1490–1499. [Google Scholar] [CrossRef]
- Pan, Y.F. Preparation and Performance of Magnetic Hollow Composite Materials Based Wooden Cellulose Fibers. Ph.D. Thesis, Inner Mongolia Agricultural University, Hohhot, China, 2016. [Google Scholar]
- Liu, Y.X.; Zhao, G.J. Xylology; China Forestry Press: Beijing, China, 2012; pp. 163–164. [Google Scholar]
- Hung, F.S. Material Application of a Transformer Box: A Study on the Electromagnetic Shielding Characteristics of Al–Ta Coating Film with Plasma-Spray Process. Coatings 2019, 9, 495. [Google Scholar] [CrossRef] [Green Version]
- Liang, R.R.; Xiao, H.; Wang, N. Shielding effectiveness of double and multilayer electromagnetic shielding fabric. J. Text. Res. 2017, 38, 51–58. [Google Scholar] [CrossRef]
- Su, Q.C.; Zhao, X.M.; Li, W.B.; Li, J.X. Simulation analysis of woven fabric electromagnetic shielding effectiveness using finite integration technique. J. Text. Res. 2016, 37, 155–160. [Google Scholar] [CrossRef]
- Henn, A.R.; Cribbc, R.M. Modeling the shielding effectiveness of metallized fabrics. In Proceedings of the International Symposium on Proceeding of Electromagnetric Compatibility, Anaheim, CA, USA, 17–21 August 1992; pp. 283–286. [Google Scholar]
- Hu, D.W.; Huang, X.Y.; Li, S.T.; Jiang, P.K. Flexible and durable cellulose/MXene nanocomposite paper for efficient electromagnetic interference shielding. Compos. Sci. Technol. 2020, 188, 107995. [Google Scholar] [CrossRef]
- Vovchenko, L.; Matzui, L.; Oliynyk, V.; Milovanov, Y.; Mamunya, Y.; Volynets, N.; Plyushch, A.; Kuzhir, P. Polyethylene composites with segregated carbon nanotubes network: Low frequency plasmons and high electromagnetic interference shielding efficiency. Materials 2020, 13, 1118. [Google Scholar] [CrossRef] [Green Version]
- Yang, K.J. Electromagnetic Compatibility Principle and Design; Posts and Telecom Press: Beijing, China, 2004; pp. 54–55. [Google Scholar]
- Araki, Y.F. The Shielding Design of Electronic Equipment; National Defence Industry Press: Beijing, China, 1975; pp. 126–136. [Google Scholar]
Solution Component | Content |
---|---|
Copper sulfate pentahydrate | 53 g·L−1 |
Seignette salt | 13 g·L−1 |
Ethylenediaminetetraacetic acid disodium salt | 27 g·L−1 |
Potassium hexacyanoferrate(II) | 1.3 g·L−1 |
Formaldehyde | 70 mL·L−1 |
Activation Solution Component | Content |
---|---|
Copper sulfate pentahydrate | 15 g·L−1 |
Hydrochloric acid | 12 mL·L−1 |
Sodium hydroxide | 15 g·L−1 |
Sodium borohydride | 12 g·L−1 |
Type | One Deposition Ni (1) | Two Depositions Ni (2) | Three Depositions Ni (3) | Four Depositions Ni (4) |
---|---|---|---|---|
Two depositions Cu (2) | 2-1 | 2-2 | 2-3 | 2-4 |
Three depositions Cu (3) | 3-1 | 3-2 | 3-3 | 3-4 |
Four depositions Cu (4) | 4-1 | 4-2 | 4-3 | 4-4 |
Type | 2-4 | 3-4 | 4-4 | 4-0 |
---|---|---|---|---|
(μm) | (μm) | (μm) | (μm) | |
Ra | 6.514 | 4.091 | 3.587 | 5.170 |
Sa | 16.491 | 4.497 | 5.714 | 6.390 |
Coatings Type | Elements Composition (wt.%) | |||
---|---|---|---|---|
Ni | P | C | O | |
Cu–Ni | 78.23 | 9.91 | 9.25 | 2.61 |
Type | Lateral Resistance (mΩ) | Longitudinal Resistance (mΩ) |
---|---|---|
2-4 | 1.38 | 1.02 |
3-4 | 0.326 | 0.236 |
4-4 | 0.14 | 0.134 |
Type | Lateral Conductivity (S/cm) | Longitudinal Conductivity (S/cm) |
---|---|---|
2-4 | 763.56 | 1050.96 |
3-4 | 3736.2 | 4297.4 |
4-4 | 7396.2 | 8325.2 |
Type of Deposited Coating | Contact Angle (°) |
---|---|
3-0 | 109.59 |
3-2 | 121.24 |
4-2 | 119.47 |
Number of Depositions | Integral Breadth β (radians) | Calculated Crystallite Size (D) (Å) |
---|---|---|
4-0 | 0.318 | 285 |
2-4 | 1.670 | 52 |
3-4 | 0.324 | 280 |
4-4 | 0.520 | 169 |
Type of Deposited Coating | Electromagnetic Shielding Effectiveness (dB) |
---|---|
1-1 | 89.59 |
3-4 | 90.69 |
4-3 | 88.31 |
4-4 | 80.07 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pan, Y.; Yin, D.; Yu, X.; Hao, N.; Huang, J. Multilayer-Structured Wood Electroless Cu–Ni Composite Coatings for Electromagnetic Interference Shielding. Coatings 2020, 10, 740. https://doi.org/10.3390/coatings10080740
Pan Y, Yin D, Yu X, Hao N, Huang J. Multilayer-Structured Wood Electroless Cu–Ni Composite Coatings for Electromagnetic Interference Shielding. Coatings. 2020; 10(8):740. https://doi.org/10.3390/coatings10080740
Chicago/Turabian StylePan, Yanfei, Dingwen Yin, Xiaofang Yu, Nanyi Hao, and Jintian Huang. 2020. "Multilayer-Structured Wood Electroless Cu–Ni Composite Coatings for Electromagnetic Interference Shielding" Coatings 10, no. 8: 740. https://doi.org/10.3390/coatings10080740
APA StylePan, Y., Yin, D., Yu, X., Hao, N., & Huang, J. (2020). Multilayer-Structured Wood Electroless Cu–Ni Composite Coatings for Electromagnetic Interference Shielding. Coatings, 10(8), 740. https://doi.org/10.3390/coatings10080740