Advances of Sensitive Infrared Detectors with HgTe Colloidal Quantum Dots
Abstract
:1. Introduction
2. Synthesis of Infrared CQDs
3. Infrared CQDs Photodetectors
4. Multispectral CQDs Photodetectors
5. CQDs Focal Plane Array
6. Conclusions and Outlook
Author Contributions
Funding
Conflicts of Interest
References
- Rogalski, A. Toward third generation HgCdTe infrared detectors. J. Alloy. Compd. 2004, 371, 53–57. [Google Scholar] [CrossRef]
- Rogalski, A.; Antoszewski, J.; Faraone, L. Third-generation infrared photodetector arrays. J. Appl. Phys. 2009, 105, 091101. [Google Scholar] [CrossRef] [Green Version]
- Stouwdam, J.W.; Veggel, F.C.J.M.V. Near-infrared emission of redispersible Er3+, Nd3+, and Ho3+ doped LaF3 nanoparticles. Nano Lett. 2002, 2, 733–737. [Google Scholar] [CrossRef]
- Schmitt, J.; Flemming, H.C. FTIR-spectroscopy in microbial and material analysis. Int. Biodeterior. Biodegrad. 1998, 41, 1–11. [Google Scholar] [CrossRef]
- Madejová, J. FTIR techniques in clay mineral studies. Vib. Spectrosc. 2003, 31, 1–10. [Google Scholar] [CrossRef]
- González, A.; Fang, Z.; Socarras, Y.; Serrat, J.; Vázquez, D.; Xu, J.; López, A.M. Pedestrian detection at day/night time with visible and FIR cameras: A comparison. Sensors 2016, 16, 820. [Google Scholar] [CrossRef]
- Briz1, S.; de Castro, A.J.; Aranda, J.M.; Mele´ndez, J.; Lo´pez, F. Reduction of false alarm rate in automatic forest fire infrared surveillance systems. Remote Sens. Environ. 2003, 86, 19–29. [Google Scholar] [CrossRef]
- Soref, R. Mid-infrared photonics in silicon and germanium. Nat. Photonics 2001, 4, 495–497. [Google Scholar] [CrossRef]
- Miller, L.M.; Smity, G.D.; Carr, G.L. Synchrotron-based biological microspectroscopy: From the mid-infrared through the far-infrared regimes. J. Biol. Phys. 2003, 29, 219–230. [Google Scholar] [CrossRef]
- Yokota, T.; Zalar, P.; Kaltenbrunner, M.; Jinno, H.; Matsuhisa, N.; Kitanosako, H.; Tachibana, Y.; Yukita, W.; Koizumi, M.; Someya, T. Ultraflexible organic photonic skin. Sci. Adv. 2016, 2, e1501856. [Google Scholar] [CrossRef] [Green Version]
- Nelms, N.; Dowson, J. Goldblack coating for thermal infrared detectors. Sens. Actuators A 2005, 120, 403–407. [Google Scholar] [CrossRef]
- Langley, S.P. The Bolometer. Nature 1881, 25, 14–16. [Google Scholar]
- Chynoweth, A.G. Dynamic method for measuring the pyroelectric effect with special reference to barium titanate. J. Appl. Phys. 1956, 27, 78. [Google Scholar] [CrossRef]
- Martyniuk, P.; Antoszewski, J.; Martyniuk, M.; Faraone, L.; Rogalski, A. New concepts in infrared photodetector designs. Appl. Phys. Rev. 2014, 1, 41102. [Google Scholar] [CrossRef] [Green Version]
- Elliott, C.T.; Day, D.; Wilson, D.J. An integrating detector for serial scan thermal imaging. Infrared Phys. 1982, 22, 31–42. [Google Scholar] [CrossRef]
- Blackburn, A.; Blackman, M.V.; Charlton, D.E.; Dunn, W.A.E.; Jenner, M.D.; Oliver, K.J.; Wotherspoon, J.T.M. The practical realisation and performance of sprite detectors. Infrared Phys. 1982, 22, 57–64. [Google Scholar] [CrossRef]
- Scribner, D.A.; Kruer, M.R.; Killiany, J.M. Infrared focal plane array technology. Proc. IEEE 1991, 79, 66–85. [Google Scholar] [CrossRef]
- Camargo, E.G.; Ueno, K.; Morishita, T.; Sato, M.; Endo, H.; Kurihara, M.; Ishibashi, K.; Kuze, N. High-sensitivity temperature measurement with miniaturized InSb mid-IR sensor. IEEE Sens. J. 2007, 7, 1335–1339. [Google Scholar] [CrossRef]
- Figgemeier, H.; Ames, C.; Beetz, J.; Breiter, R.; Eich, D.; Hanna, S.; Mahlein, K.M.; Schallenberg, T.; Sieck, A.; Wenisch, J. High-performance SWIR/MWIR and MWIR/MWIR bispectral MCT detectors by AIM. Infrared Technol. Appl. Xliv. 2018, 10624, 106240S. [Google Scholar] [CrossRef]
- Cervera, C.; Baier, N.; Gravrand, O.; Mollard, L.; Lobre, C.; Destefanis, G.; Zanatta, J.P.; Boulade, O.; Moreau, V. Low-dark current p-on-n MCT detector in long and very long-wavelength infrared. Infrared Technol. Appl. Xli. 2015, 9451, 945129. [Google Scholar] [CrossRef]
- Sarusi, G. QWIP or other alternative for third generation infrared systems. Infrared Phys. Technol. 2003, 44, 439–444. [Google Scholar] [CrossRef]
- Haddadi, A.; Dehzangi, A.; Chevallier, R.; Adhikary, S.; Razeghi, M. Bias-selectable nBn dual-band long-/very long-wavelength infrared photodetectors based on InAs/InAs1-xSbx/AlAs1-xSbx type-II superlattices. Sci. Rep. 2017, 7, 3379. [Google Scholar] [CrossRef] [Green Version]
- Haddadi, A.; Chevallier, R.; Chen, G.; Hoang, A.M.; Razeghi, M. Bias-selectable dual-band mid-/long-wavelength infrared photodetectors based on InAs/InAs1−xSbx type-II superlattices. Appl. Phys. Lett. 2015, 106, 011104. [Google Scholar] [CrossRef]
- Wang, X.; Koleilat, G.I.; Tang, J.; Liu, H.; Kramer, I.J.; Debnath, R.; Brzozowski, L.; Barkhouse, D.A.R.; Levina, L.; Hoogland, S.; et al. Tandem colloidal quantum dot solar cells employing a graded recombination layer. Nat. Photon. 2011, 5, 480–484. [Google Scholar] [CrossRef]
- Bao, J.; Bawendi, M.G. A colloidal quantum dot spectrometer. Nature 2015, 523, 67–70. [Google Scholar] [CrossRef]
- Konstantatos, G.; Badioli, M.; Gaudreau, L.; Osmond, J.; Bernechea, M.; de Arquer, F.P.G.; Gatti, F.; Koppens, F.H.L. Hybrid graphene–quantum dot phototransistors with ultrahigh gain. Nat. Nanotechnol. 2012, 7, 363–368. [Google Scholar] [CrossRef]
- Goossens, S.; Navickaite, G.; Monasterio, C.; Gupta, S.; Piqueras, J.J.; Pérez, R.; Burwell, G.; Nikitskiy, I.; Lasanta, T.; Galán, T.; et al. Broadband image sensor array based on graphene–CMOS integration. Nat. Photon. 2017, 11, 366–371. [Google Scholar] [CrossRef]
- Wu, K.; Park, Y.; Lim, J.; Klimov, V.I. Towards zero-threshold optical gain using charged semiconductor quantum dots. Nat. Nanotechnol. 2017, 12, 1140–1147. [Google Scholar] [CrossRef]
- Yuan, F.; Yuan, T.; Sui, L.; Wang, Z.; Xi, Z.; Li, Y.; Li, X.; Fan, L.; Tan, Z.; Chen, A.; et al. Engineering triangular carbon quantum dots with unprecedented narrow bandwidth emission for multicolored LEDs. Nat. Commun. 2018, 9, 2249. [Google Scholar] [CrossRef]
- Böberl, M.; Kovalenko, M.V.; Gamerith, S.; List, E.J.W.; Heiss, W. Inkjet-printed nanocrystal photodetectors operating up to 3 μm wavelengths. Adv. Mater. 2007, 19, 3574–3578. [Google Scholar] [CrossRef]
- Chen, M.; Lu, H.; Abdelazim, N.M.; Zhu, Y.; Wang, Z.; Ren, W.; Kershaw, S.V.; Rogach, A.L.; Zhao, N. Mercury telluride quantum dot based phototransistor enabling high-sensitivity room-temperature photodetection at 2000 nm. ACS Nano 2017, 11, 5614–5622. [Google Scholar] [CrossRef] [PubMed]
- Jagtap, A.; Goubet, N.; Livache, C.; Chu, A.; Martinez, B.; Gréboval, C.; Qu, J.; Dandeu, E.; Becerra, L.; Witkowski, N.; et al. Short wave infrared devices based on HgTe nanocrystals with air stable performances. J. Phys. Chem. C 2018, 122, 14979–14985. [Google Scholar] [CrossRef]
- Ackerman, M.M.; Chen, M.; Guyot-Sionnest, P. HgTe colloidal quantum dot photodiodes for extended short-wave infrared detection. Appl. Phys. Lett. 2020, 116, 083502. [Google Scholar] [CrossRef]
- Keuleyan, S.; Lhuillier, E.; Brajuskovic, V.; Guyot-Sionnest, P. Mid-infrared HgTe colloidal quantum dot photodetectors. Nat. Photonics 2011, 5, 489–493. [Google Scholar] [CrossRef]
- Keuleyan, S.; Lhuillier, E.; Guyot-Sionnest, P. Synthesis of colloidal HgTe quantum dots for narrow mid-IR emission and detection. J. Am. Chem. Soc. 2011, 133, 16422–16424. [Google Scholar] [CrossRef] [PubMed]
- Lhuillier, E.; Keuleyan, S.; Guyot-Sionnest, P. Colloidal quantum dots for mid-IR applications. Infrared Phys. Technol. 2013, 59, 133–136. [Google Scholar] [CrossRef]
- Lhuillier, E.; Keuleyan, S.; Zolotavin, P.; Guyot-Sionnest, P. Mid-infrared HgTe/As2S3 field effect transistors and photodetectors. Adv. Mater. 2013, 25, 137–141. [Google Scholar] [CrossRef]
- Guyot-Sionnest, P.; Roberts, J.A. Background limited mid-infrared photodetection with photovoltaic HgTe colloidal quantum dots. Appl. Phys. Lett. 2015, 107, 253104. [Google Scholar] [CrossRef]
- Yifat, Y.; Ackerman, M.; Guyot-Sionnest, P. Mid-IR colloidal quantum dot detectors enhanced by optical nano-antennas. Appl. Phys. Lett. 2017, 110, 41106. [Google Scholar] [CrossRef]
- Ackerman, M.M.; Tang, X.; Guyot-Sionnest, P. Fast and sensitive colloidal quantum dot mid-wave infrared photodetectors. ACS Nano 2018, 12, 7264–7271. [Google Scholar] [CrossRef]
- Tang, X.; Ackerman, M.M.; Guyot-Sionnest, P. Thermal Imaging with Plasmon Resonance Enhanced HgTe Colloidal Quantum Dot Photovoltaic Devices. ACS Nano 2018, 12, 7362–7370. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Lan, X.; Tang, X.; Wang, Y.; Hudson, M.H.; Talapin, D.V.; Guyot-Sionnest, P. High carrier mobility in HgTe quantum dot solids improves mid-IR photodetectors. ACS Photonics. 2019, 6, 2358–2365. [Google Scholar] [CrossRef]
- Keuleyan, S.E.; Guyot-Sionnest, P.; Delerue, C.; Allan, G. Mercury telluride colloidal quantum dots: Electronic structure, size-dependent spectra, and photocurrent detection up to 12 μm. ACS Nano 2014, 8, 8676–8682. [Google Scholar] [CrossRef] [PubMed]
- Tang, X.; Wu, G.F.; Lai, K.W.C. Plasmon resonance enhanced colloidal HgSe quantum dot filterless narrowband photodetectors for mid-wave infrared. J. Mater. Chem. C 2017, 5, 362–369. [Google Scholar] [CrossRef]
- Goubet, N.; Jagtap, A.; Livache, C.; Martinez, B.; Portalès, H.; Xu, X.Z.; Lobo, R.P.S.M.; Dubertret, B.; Lhuillier, E. Terahertz HgTe nanocrystals: Beyond confinement. J. Am. Chem. Soc. 2018, 140, 5033–5036. [Google Scholar] [CrossRef] [Green Version]
- Lhuillier, E.; Scarafagio, M.; Hease, P.; Nadal, B.; Aubin, H.; Xu, X.Z.; Lequeux, N.; Patriarche, G.; Ithurria, S.; Dubertret, B. Infrared photodetection based on colloidal quantum-dot films with high mobility and optical absorption up to THz. Nano Lett. 2016, 16, 1282–1286. [Google Scholar] [CrossRef] [Green Version]
- Lhuillier, E.; Keuleyan, S.; Guyot-Sionnest, P. Optical properties of HgTe colloidal quantum dots. Nanotechnology 2012, 23, 175705. [Google Scholar] [CrossRef]
- Shen, G.; Chen, M.; Guyot-Sionnest, P. Synthesis of nonaggregating HgTe colloidal quantum dots and the emergence of air-stable n-doping. J. Phys. Chem. Lett. 2017, 8, 2224–2228. [Google Scholar] [CrossRef]
- Tang, X.; Tang, X.; Lai, K.W.C. Scalable fabrication of infrared detectors with multispectral photoresponse based on patterned colloidal quantum dot films. ACS Photonics 2016, 3, 2396–2404. [Google Scholar] [CrossRef]
- Liu, H.; Lhuillier, E.; Guyot-Sionnest, P. 1/f noise in semiconductor and metal nanocrystal solids. J. Appl. Phys. 2014, 115, 154309. [Google Scholar] [CrossRef]
- Nikitskiy, I.; Goossens, S.; Kufer, D.; Lasanta, T.; Navickaite, G.; Koppens, F.H.L.; Konstantatos, G. Integrating an electrically active colloidal quantum dot photodiode with a graphene phototransistor. Nat. Commun. 2016, 7, 11954. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huo, N.; Gupta, S.; Konstantatos, G. MoS2-HgTe Quantum dot hybrid photodetectors beyond 2 µm. Adv. Mater. 2017, 29, 1606576. [Google Scholar] [CrossRef] [PubMed]
- Özdemir, O.; Ramiro, I.; Gupta, S.; Konstantatos, G. High sensitivity hybrid PbS CQD-TMDC photodetectors up to 2 μm. ACS Photonics 2019, 6, 2381–2386. [Google Scholar] [CrossRef] [Green Version]
- Xu, H.; Wu, J.; Feng, Q.; Mao, N.; Wang, C.; Zhang, J. High responsivity and gate tunable graphene-MoS2 hybrid phototransistor. Small 2014, 10, 2300–2306. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Shao, L.; Kershaw, S.V.; Yu, H.; Wang, J.; Rogach, A.L.; Zhao, N. Photocurrent enhancement of HgTe quantum dot photodiodes by plasmonic gold nanorod structures. ACS Nano 2014, 8, 8208–8216. [Google Scholar] [CrossRef] [PubMed]
- Tang, X.; Ackerman, M.M.; Shen, G.; Guyot-Sionnest, P. Towards infrared electronic eyes: Flexible colloidal quantum dot photovoltaic detectors enhanced by resonant cavity. Small 2019, 15, 1804920. [Google Scholar] [CrossRef]
- Tang, X.; Ackerman, M.M.; Guyot-Sionnest, P. Acquisition of hyperspectral data with colloidal quantum dots. Laser Photonics Rev. 2019, 13, 1900165. [Google Scholar] [CrossRef]
- Tang, X.; Ackerman, M.M.; Chen, M.; Guyot-Sionnest, P. Dual-band infrared imaging using stacked colloidal quantum dot photodiodes. Nat. Photonics 2019, 13, 277–282. [Google Scholar] [CrossRef]
- Choi, J.; Wang, H.; Oh, S.J.; Paik, T.; Jo, P.S.; Sung, J.; Ye, X.; Zhao, T.; Diroll, B.T.; Murray, C.B.; et al. Exploiting the colloidal nanocrystal library to construct electronic devices. Science 2016, 352, 205–208. [Google Scholar] [CrossRef] [Green Version]
- Tang, X.; Chen, M.; Kamath, A.; Ackerman, M.M.; Guyot-Sionnest, P. Colloidal quantum-dots/graphene/silicon dual-channel detection of visible light and short-wave infrared. ACS Photonics 2020, 7, 1117–1121. [Google Scholar] [CrossRef]
- Kim, L.; Anikeeva, P.O.; Coe-Sullivan, S.A.; Steckel, J.S.; Bawendi, M.G.; Bulovic, V. Contact printing of quantum dot light-emitting devices. Nano Lett. 2008, 8, 4513–4517. [Google Scholar] [CrossRef]
- Kim, T.; Cho, K.; Lee, E.K.; Lee, S.J.; Chae, J.; Kim, J.W.; Kim, D.H.; Kwon, J.; Amaratunga, G.; Lee, S.Y.; et al. Full-colour quantum dot displays fabricated by transfer printing. Nat. Photonics 2011, 5, 176–182. [Google Scholar] [CrossRef]
- Choi, M.K.; Yang, J.; Kang, K.; Kim, D.C.; Choi, C.; Park, C.; Kim, S.J.; Chae, S.I.; Kim, T.; Kim, J.H.; et al. Wearable red-green-blue quantum dot light-emitting diode array using high- resolution intaglio transfer printing. Nat. Commun. 2015, 6, 7149. [Google Scholar] [CrossRef] [PubMed]
- Haverinen, H.M.; Myllylä, R.A.; Jabbour, G.E. Inkjet printing of light emitting quantum dots. Appl. Phys. Lett. 2009, 94, 73108. [Google Scholar] [CrossRef]
- Wood, V.; Panzer, M.J.; Chen, J.; Bradley, M.S.; Halpert, J.E.; Bawendi, M.G.; Bulovic, V. Inkjet-printed quantum dot-polymer composites for full-color AC-driven displays. Adv. Mater. 2009, 21, 2151–2155. [Google Scholar] [CrossRef]
- Zhang, H.; Son, J.S.; Dolzhnikov, D.S.; Filatov, A.S.; Hazarika, A.; Wang, Y.; Hudson, M.H.; Sun, C.; Chattopadhyay, S.; Talapin, D.V. Soluble lead and bismuth chalcogenidometallates: Versatile solders for thermoelectric materials. Chem. Mater. 2017, 29, 6396–6404. [Google Scholar] [CrossRef]
- Bertino, M.F.; Gadipalli, R.R.; Story, J.G.; Williams, C.G.; Zhang, G.; Sotiriou-Leventis, C.; Tokuhiro, A.T.; Guha, S.; Leventis, N. Laser writing of semiconductor nanoparticles and quantum dots. Appl. Phys. Lett. 2004, 85, 6007–6009. [Google Scholar] [CrossRef]
- Wang, Y.; Fedin, I.; Zhang, H.; Talapin, D.V. Direct optical lithography of functional inorganic nanomaterials. Science 2017, 357, 385–388. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Pan, J.; Wu, H.; Talapin, D.V. Direct wavelength-selective optical and electron-beam lithography of functional inorganic nanomaterials. ACS Nano 2019, 13, 13917–13931. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.; Kwon, S.; Kang, Y.K.; Kim, Y.; Lee, M.; Han, K.; Facchetti, A.; Kim, M.; Park, S.K. A skin-like two-dimensionally pixelized full-color quantum dot photodetector. Sci. Adv. 2019, 5, eaax8801. [Google Scholar] [CrossRef] [Green Version]
- Tang, X.; Chen, M.; Ackerman, M.M.; Melnychuk, C.; Guyot-Sionnest, P. Direct imprinting of quasi-3D nanophotonic structures into colloidal quantum-dot devices. Adv. Mater. 2020, 32, 1906590. [Google Scholar] [CrossRef] [PubMed]
- Ciani, A.J.; Pimpinella, R.E.; Grein, C.H.; Guyot-Sionnest, P. Colloidal quantum dots for low-cost MWIR imaging. In Infrared Technology and Applications XLII, Proceedings of SPIE Defense + Security, Baltimore, MD, USA, 20 May 2016; SPIE: Bellingham, WA, USA, 2016; Volume 9819, p. 981919. [Google Scholar] [CrossRef]
- Buurma, C.; Pimpinella, R.E.; Ciani, A.J.; Feldman, J.S.; Grein, C.H.; Guyot-Sionnest, P. MWIR imaging with low cost colloidal quantum dot films. In Optical Sensing, Imaging, and Photon Counting: Nanostructured Devices and Applications 2016, Proceedings of SPIE Nanoscience + Engineering, San Diego, CA, USA,26 September 2016; SPIE: Bellingham, WA, USA, 2016; Volume 9933, p. 993303. [Google Scholar] [CrossRef]
Device Structure Type | Year | Spectral Range (µm) | R (A/W) | EQE (%) | D* (Jones) | Response Time | Reference |
---|---|---|---|---|---|---|---|
HgTe CQDs photoconductors | 2011 | <5 | 0.25 | 10 | 2 × 109 | NA | [34] |
HgTe CQDs photoconductors | 2014 | <12 | 3 × 10−4 | NA | 6.5 × 106 | <5 μs | [43] |
HgTe CQDs photoconductors | 2019 | <5 | 0.2 | 30 | 4.5 × 1010 | NA | [42] |
HgTe/AsS3 phototransistors | 2013 | <3.5 | 5 × 10−3 | NA | 3.5 × 1010 | NA | [37] |
HgTe CQDs phototransistors | 2017 | <2 | 0.4 | NA | 2 × 1010 | NA | [31] |
MoS2-HgTe CQDs Hybrid phototransistors | 2017 | <2 | 106 | NA | 1012 | 4 ms | [52] |
HgTe CQDs photodiodes | 2015 | 3–5 | 8 × 10−2 | 2.5 | 4.2 × 1010 | 0.7 μs | [38] |
HgTe CQDs photodiodes | 2018 | <4.8 | 0.38 | 17 | 1.2 × 1011 | <1 μs | [40] |
Plasmon ResonanceEnhanced HgTe CQDs photodiodes | 2018 | <4.5 | 1.62 | 45 | 4 × 1011 | <1 μs | [41] |
Flexible HgTe CQDs photodiodes | 2019 | <2.2 | 0.5 | 30 | 7.5 × 1010 | 260 ns | [56] |
Hyperspectral HgTe CQDs photodiodes | 2019 | 1.53–2.08 | 0.2 | 11 | >1010 | 120 ns | [57] |
Dual-band HgTe CQDs photodiodes | 2019 | <2.5 and 3–5 | 0.3 and 0.15 | NA | 1011 and 3 × 1010 | <2.5 μs | [58] |
HgTe CQDs photodiodes | 2020 | 2–3 | 1 | 30 | 1011 | NA | [33] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, S.; Hu, Y.; Hao, Q. Advances of Sensitive Infrared Detectors with HgTe Colloidal Quantum Dots. Coatings 2020, 10, 760. https://doi.org/10.3390/coatings10080760
Zhang S, Hu Y, Hao Q. Advances of Sensitive Infrared Detectors with HgTe Colloidal Quantum Dots. Coatings. 2020; 10(8):760. https://doi.org/10.3390/coatings10080760
Chicago/Turabian StyleZhang, Shuo, Yao Hu, and Qun Hao. 2020. "Advances of Sensitive Infrared Detectors with HgTe Colloidal Quantum Dots" Coatings 10, no. 8: 760. https://doi.org/10.3390/coatings10080760
APA StyleZhang, S., Hu, Y., & Hao, Q. (2020). Advances of Sensitive Infrared Detectors with HgTe Colloidal Quantum Dots. Coatings, 10(8), 760. https://doi.org/10.3390/coatings10080760