Effect of MF-Coated Epoxy Resin Microcapsules on Properties of Waterborne Wood Coating on Basswood
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of MF-Coated Epoxy Resin Microcapsules and Coating
2.3. Preparation of Coating
2.4. Testing and Characterization
3. Results and Discussion
3.1. Microcapsule Structure
3.2. Effect of Microcapsule Mass Fraction on Optical Properties
3.3. Effect of Microcapsule Mass Fraction on Mechanical Properties of Waterborne Topcoat Film
3.4. Ageing Resistance Test of Wood Coating
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Pedaballi, S.; Li, C.C.; Song, Y.J. Dispersion of microcapsules for the improved thermochromic performance of smart coatings. RSC Adv. 2019, 9, 24175–24183. [Google Scholar] [CrossRef] [Green Version]
- Dai, J.Y.; Ma, S.Q.; Liu, X.Q.; Han, L.J.; Wu, Y.G.; Dai, X.Y.; Zhu, J. Synthesis of bio-based unsaturated polyester resins and their application in waterborne UV-curable coatings. Prog. Org. Coat. 2015, 78, 49–54. [Google Scholar] [CrossRef]
- Zhou, L.; Fu, Y.C. Flame-retardant wood composites based on immobilizing with chitosan/sodium phytate/nano-TiO2-ZnO coatings via layer-by-layer self-assembly. Coatings 2020, 10, 296. [Google Scholar] [CrossRef] [Green Version]
- Xu, W.; Fang, X.Y.; Han, J.T.; Wu, Z.H.; Zhang, J.L. Effect of coating thickness on sound absorption property of four wood species commonly used for piano soundboards. Wood Fiber Sci. 2020, 52, 28–43. [Google Scholar] [CrossRef] [Green Version]
- Herrera, R.; Muszynska, M.; Krystofiak, T.; Labidi, J. Comparative evaluation of different thermally modified wood samples finishing with UV curable and waterborne coatings. Appl. Surf. Sci. 2015, 357, 1444–1453. [Google Scholar] [CrossRef]
- Zhang, S.W.; Yu, A.X.; Song, X.Q.; Liu, X.Y. Synthesis and characterization of waterborne UV curable polyurethane nanocomposites based on the macromonomer surface modification of colloidal silica. Prog. Org. Coat. 2013, 76, 1032–1039. [Google Scholar] [CrossRef]
- Li, H.Y.; Cui, Y.X.; Li, Z.K.; Zhu, Y.J.; Wang, H.Y. Fabrication of microcapsules containing dual-functional tung oil and properties suitable for self-healing and self-lubricating coatings. Prog. Org. Coat. 2018, 115, 164–171. [Google Scholar] [CrossRef]
- Xiong, X.Q.; Yuan, Y.Y.; Niu, Y.T.; Zhang, L.T.; Wu, Z.H. Effects of different treatments on surface activity of rice straw particleboard. Sci. Adv. Mater. 2020, 12, 289–295. [Google Scholar] [CrossRef]
- White, S.R.; Sottos, N.R.; Geubelle, P.H.; Moore, J.S.; Kessler, M.R.; Sriram, S.R.; Brown, E.N.; Viswanathan, S. Autonomic healing of polymer composites. Nature 2001, 409, 794–797. [Google Scholar] [CrossRef]
- Song, Y.K.; Kim, B.; Lee, T.H.; Kim, S.Y.; Kim, J.C.; Noh, S.M.; Park, Y.I. Monitoring fluorescence colors to separately identify cracks and healed cracks in microcapsule containing self healing coating. Sens. Actuators B Chem. 2018, 257, 1001–1008. [Google Scholar] [CrossRef]
- Ataei, S.; Khorasani, S.N.; Neisiany, R.E. Biofriendly vegetable oil healing agents used for developing self healing coatings: A review. Prog. Org. Coat. 2019, 129, 77–95. [Google Scholar] [CrossRef]
- Tasker, A.L.; Hitchcock, J.P.; He, L.; Baxter, E.A.; Biggs, S.; Cayre, O.J. The effect of surfactant chain length on the morphology of poly(methyl methacrylate) microcapsules for fragrance oil encapsulation. J. Colloid Interface Sci. 2016, 484, 10–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Z.Q.; Gao, Q.; Yang, J.M.; Wang, Y.; Yang, J.Y.; Zhang, X.; Feng, G.Z.; Cheng, Z.Q.; Wang, S.J.; Su, H.G. Fabrication and release behavior of nitrapyrin microcapsules: Using modified melamine-formaldehyde resin as shell material. Sci. Total Environ. 2020, 704, 135394. [Google Scholar] [CrossRef] [PubMed]
- Ebrahimnezhad-Khaljiri, H.; Eslami-Farsani, R.; Chirani, S.A. Microcapsulated epoxy resin with nanosilica-urea formaldehyde composite shell. J. Appl. Polym. Sci. 2020, 137, 16. [Google Scholar] [CrossRef]
- Dai, Y.; Wei, W.Q.; Zhang, J.W.; Anastaiia, A.; Chen, M.H. Effect of Si-based compound nanoparticles on anticorrosive properties of epoxy resin. J. Nanosci. Nanotechnol. 2020, 20, 4961–4970. [Google Scholar] [CrossRef]
- Zhang, X.P.; Zhang, L.X.; Zhang, D.X.; Liu, S.S.; Wei, D.G.; Liu, F. Mechanism of the temperature-responsive material regulating porous morphology on epoxy phenolic novolac resin microcapsule surface. Colloid. Surf. Asp. 2020, 593, 124581. [Google Scholar] [CrossRef]
- Liu, J.H.; He, Z.J.; Wu, G.H.; Zhang, X.Q.; Zhao, C.; Lei, C.H. Synthesis of a novel nonflammable eugenol-based phosphazene epoxy resin with unique burned intumescent char. Chem. Eng. J. 2020, 390, 124620. [Google Scholar] [CrossRef]
- Yan, X.X.; Chang, Y.J. Investigation of waterborne thermochromic topcoat film with color-changing microcapsules on Chinese fir surface. Prog. Org. Coat. 2019, 136, 105262. [Google Scholar] [CrossRef]
- Paints and Varnishes-Determination of Film Hardness by Pencil Test; Standardization Administration of the People’s Republic of China: Beijing, China, 1998; pp. 1–3, GB/T 6739-2006. (In Chinese)
- Test of Surface Coatings of Furniture-Part 6: Determination of Gloss; GB/T 6739-2006; Standardization Administration of the People’s Republic of China: Beijing, China, 2013; pp. 1–6. (In Chinese)
- Jang, Y.; Lee, S.B.; Hong, J.H.; Chun, S.; Lee, J.; Hong, S. Synthesis of 2-aryl quinazolinones via iron-catalyzed cross-dehydrogenative coupling (CDC) between N–H and C–H bonds. Org. Biomol. Chem. 2020, 18, 5435–5441. [Google Scholar]
- Shnawa, H.A.; Khalaf, M.N.; Jahani, Y. Thermal degradation, dynamic mechanical and morphological properties of PVC stabilized with natural polyphenol-based epoxy resin. Polym. Bull. 2018, 75, 3473–3498. [Google Scholar] [CrossRef]
- Zhou, Y.C.; Chen, Z.Z.; Gong, H.J.; Chen, L.; Yu, H.Q.; Wu, W.L. Characteristics of dehydration during rice husk pyrolysis and catalytic mechanism of dehydration reaction with NiO/gamma-Al2O3 as catalyst. Fuel 2019, 245, 131–138. [Google Scholar] [CrossRef]
- Xiong, X.Q.; Yuan, Y.Y.; Niu, Y.T.; Zhang, L.T. Research on the effects of roughness on the tactile properties of rice straw particleboard surface. Sci. Adv. Mater. 2020, 12, 795–801. [Google Scholar] [CrossRef]
- Yan, X.X.; Qian, X.Y.; Lu, R.; Miyakoshi, T. Comparison and optimization of reactive dyes and coating performance on Fraxinus mandshurica veneer. Polymers 2018, 10, 1302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Microcapsule Mass Fraction (%) | Microcapsule Weight (g) | Waterborne Topcoat Weight (g) | Microcapsule Waterborne Coating Weight (g) |
---|---|---|---|
0 | 0 | 3.00 | 3.00 |
1.0 | 0.03 | 2.97 | 3.00 |
4.0 | 0.12 | 2.88 | 3.00 |
7.0 | 0.21 | 2.79 | 3.00 |
10.0 | 0.30 | 2.70 | 3.00 |
13.0 | 0.39 | 2.61 | 3.00 |
16.0 | 0.48 | 2.52 | 3.00 |
20.0 | 0.60 | 2.40 | 3.00 |
Level | Degree of Discoloration | Color Difference |
---|---|---|
0 | no discoloration | ≤1.5 |
1 | very slight discoloration | 1.6–3.0 |
2 | slight discoloration | 3.1–6.0 |
3 | apparent discoloration | 6.1–9.0 |
4 | severe discoloration | 9.1–12.0 |
5 | complete discoloration | >12.0 |
Microcapsule Mass Fraction (%) | 0.50 Core–Wall Ratio | 0.67 Core–Wall Ratio | ||||
---|---|---|---|---|---|---|
20° Gloss (GU) | 60° Gloss (GU) | 85° Gloss (GU) | 20° Gloss (GU) | 60° Gloss (GU) | 85° Gloss (GU) | |
0 | 8.4 ± 0.2 | 31.6 ± 0.8 | 48.9 ± 1.2 | 8.4 ± 0.2 | 31.6 ± 0.8 | 48.9 ± 1.2 |
1.0 | 9.0 ± 0.2 | 31.2 ± 0.8 | 33.0 ± 0.8 | 8.3 ± 0.2 | 27.1 ± 0.5 | 26.5 ± 0.5 |
4.0 | 7.3 ± 0.2 | 30.0 ± 0.8 | 19.3 ± 0.6 | 3.3 ± 0.1 | 16.8 ± 0.4 | 9.2 ± 0.2 |
7.0 | 2.8 ± 0.1 | 15.1 ± 0.4 | 5.2 ± 0.2 | 3.7 ± 0.1 | 14.8 ± 0.6 | 5.7 ± 0.2 |
10.0 | 2.6 ± 0.1 | 13.3 ± 0.3 | 4.3 ± 0.2 | 1.8 ± 0.1 | 7.2 ± 0.2 | 2.8 ± 0.1 |
13.0 | 2.5 ± 0.1 | 7.9 ± 0.2 | 3.9 ± 0.1 | 1.7 ± 0 | 7.0 ± 0.2 | 1.3 ± 0 |
16.0 | 1.9 ± 0 | 7.5 ± 0.2 | 1.9 ± 0.1 | 1.5 ± 0 | 4.9 ± 0.2 | 0.6 ± 0 |
20.0 | 1.2 ± 0 | 2.7 ± 0 | 0.2 ± 0 | 1.3 ± 0 | 2.7 ± 0 | 0.2 ± 0 |
Microcapsule Mass Fraction (%) | 0.50 Core–Wall Ratio | 0.67 Core–Wall Ratio |
---|---|---|
0.0 | H | H |
1.0 | HB | HB |
4.0 | H | HB |
7.0 | H | HB |
10.0 | H | HB |
13.0 | H | HB |
16.0 | H | HB |
20.0 | H | HB |
Microcapsule Mass Fraction (%) | Impact Resistance of 0.50 Core–Wall Ratio (cm) | Impact Resistance of 0.67 Core–Wall Ratio (cm) |
---|---|---|
0 | 2.0 ± 0 | 2.0 ± 0 |
1.0 | 4.0 ± 0.1 | 2.0 ± 0 |
4.0 | 4.0 ± 0.1 | 2.0 ± 0 |
7.0 | 4.0 ± 0.1 | 2.0 ± 0 |
10.0 | 5.0 ± 0.2 | 2.0 ± 0 |
13.0 | 5.0 ± 0.2 | 2.0 ± 0 |
16.0 | 5.0 ± 0.2 | 2.0 ± 0 |
20.0 | 5.0 ± 0.2 | 3.0 ± 0 |
Microcapsule Mass Fraction (%) | Adhesion (Level) 0.50 Core–Wall Ratio | Adhesion (Level) 0.67 Core–Wall Ratio |
---|---|---|
0 | 1 ± 0 | 1 ± 0 |
1.0 | 1 ± 0 | 1 ± 0 |
4.0 | 1 ± 0 | 1 ± 0 |
7.0 | 1 ± 0 | 2 ± 0 |
10.0 | 2 ± 0 | 2 ± 0 |
13.0 | 2 ± 0 | 2 ± 0 |
16.0 | 2 ± 0 | 2 ± 0 |
20.0 | 2 ± 0 | 2 ± 0 |
Microcapsule Mass Fraction (%) | Color Difference of 0.50 Core–Wall Ratio | Color Difference of 0.67 Core–Wall Ratio |
---|---|---|
0 | 5.0 ± 0.2 | 5.2 ± 0.1 |
1.0 | 3.2 ± 0.2 | 2.8 ± 0 |
4.0 | 2.5 ± 0.1 | 1.7 ± 0.1 |
7.0 | 2.7 ± 0.1 | 2.2 ± 0 |
10.0 | 2.9 ± 0.2 | 2.6 ± 0 |
13.0 | 3.8 ± 0.1 | 3.5 ± 0.1 |
16.0 | 4.3 ± 0.2 | 3.8 ± 0.1 |
20.0 | 4.5 ± 0.2 | 5.7 ± 0.1 |
Microcapsule Mass Fraction (%) | Loss of Gloss with 0.50 Core–Wall Ratio (%) | Loss of Gloss with 0.67 Core–Wall Ratio (%) |
---|---|---|
0 | 6.1 ± 0.2 | 6.1 ± 0.2 |
1.0 | 1.1 ± 0 | 1.3 ± 0 |
4.0 | 0.1 ± 0 | 0.2 ± 0 |
7.0 | 0.3 ± 0 | 0.5 ± 0 |
10.0 | 0.6 ± 0 | 0.7 ± 0 |
13.0 | 2.7 ± 0.1 | 2.6 ± 0.1 |
16.0 | 4.4 ± 0.2 | 3.2 ± 0.1 |
20.0 | 5.4 ± 0.2 | 4.1 ± 0.2 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, X.; Chang, Y. Effect of MF-Coated Epoxy Resin Microcapsules on Properties of Waterborne Wood Coating on Basswood. Coatings 2020, 10, 785. https://doi.org/10.3390/coatings10080785
Yan X, Chang Y. Effect of MF-Coated Epoxy Resin Microcapsules on Properties of Waterborne Wood Coating on Basswood. Coatings. 2020; 10(8):785. https://doi.org/10.3390/coatings10080785
Chicago/Turabian StyleYan, Xiaoxing, and Yijuan Chang. 2020. "Effect of MF-Coated Epoxy Resin Microcapsules on Properties of Waterborne Wood Coating on Basswood" Coatings 10, no. 8: 785. https://doi.org/10.3390/coatings10080785
APA StyleYan, X., & Chang, Y. (2020). Effect of MF-Coated Epoxy Resin Microcapsules on Properties of Waterborne Wood Coating on Basswood. Coatings, 10(8), 785. https://doi.org/10.3390/coatings10080785