RF/DC Magnetron Sputtering Deposition of Thin Layers for Solar Cell Fabrication
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Thin Contact Films for CIGS Photovoltaic Device
3.2. Heterojunction Materials of CIGS Photovoltaic Device
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Fraunhofer ISE. Available online: https://www.ise.fraunhofer.de/de.html (accessed on 18 March 2020).
- Hernández-Callejo, L.; Gallardo-Saavedra, S.; Alonso-Gómez, V. A review of photovoltaic systems: Design, operation and maintenance. Sol. Energy 2019, 188, 426–440. [Google Scholar] [CrossRef]
- Wang, Y.-C.; Wu, T.-T.; Chueh, Y.-L. A critical review on flexible Cu(In, Ga)Se2 (CIGS) solar cells. Mater. Chem. Phys. 2019, 234, 329–344. [Google Scholar] [CrossRef]
- Lee, T.D.; Ebong, A.U. A review of thin film solar cell technologies and challenges. Renew. Sustain. Energy Rev. 2017, 70, 1286–1297. [Google Scholar] [CrossRef]
- Gulkowski, S.; Zdyb, A.; Dragan, P. Experimental Efficiency Analysis of a Photovoltaic System with Different Module Technologies under Temperate Climate Conditions. Appl. Sci. 2019, 9, 141. [Google Scholar] [CrossRef] [Green Version]
- Zdyb, A.; Gulkowski, S. Performance Assessment of Four Different Photovoltaic Technologies in Poland. Energies 2020, 13, 196. [Google Scholar] [CrossRef] [Green Version]
- Solar Cell Efficiency Tables (Version 53) Green 2019 Progress in Photovoltaics: Research and Applications Wiley Online Library. Available online: https://onlinelibrary.wiley.com/doi/10.1002/pip.3102 (accessed on 18 March 2020).
- Dhere, N.G. Scale-up issues of CIGS thin film PV modules. Sol. Energy Mater. Sol. Cells 2011, 95, 277–280. [Google Scholar] [CrossRef]
- Ramanujam, J.; Bishop, D.M.; Todorov, T.K.; Gunawan, O.; Rath, J.; Nekovei, R.; Artegiani, E.; Romeo, A. Flexible CIGS, CdTe and a-Si:H based thin film solar cells: A review. Prog. Mater. Sci. 2020, 110, 100619. [Google Scholar] [CrossRef]
- Alhammadi, S.; Park, H.; Kim, W.K. Optimization of Intrinsic ZnO Thickness in Cu(In,Ga)Se2-Based Thin Film Solar Cells. Materials 2019, 12, 1365. [Google Scholar] [CrossRef] [Green Version]
- Huang, C.-H.; Chuang, W.-J.; Lin, C.-P.; Jan, Y.-L.; Shih, Y.-C. Deposition Technologies of High-Efficiency CIGS Solar Cells: Development of Two-Step and Co-Evaporation Processes. Crystals 2018, 8, 296. [Google Scholar] [CrossRef] [Green Version]
- Peace, B.; Claypoole, J.; Sun, N.; Dwyer, D.; Eisaman, M.D.; Haldar, P.; Efstathiadis, H. Characterization of Cu(In,Ga)Se2 (CIGS) films with varying gallium ratios. J. Alloys Compd. 2016, 657, 873–877. [Google Scholar] [CrossRef] [Green Version]
- Alhammadi, S.; Moon, K.; Park, H.; Kim, W.K. Effect of different cadmium salts on the properties of chemical-bath-deposited CdS thin films and Cu(InGa)Se2 solar cells. Thin Solid Film 2017, 625, 56–61. [Google Scholar] [CrossRef]
- Salomé, P.M.P.; Keller, J.; Törndahl, T.; Teixeira, J.P.; Nicoara, N.; Andrade, R.-R.; Stroppa, D.G.; González, J.C.; Edoff, M.; Leitão, J.P.; et al. CdS and Zn1−xSnxOy buffer layers for CIGS solar cells. Sol. Energy Mater. Sol. Cells 2017, 159, 272–281. [Google Scholar] [CrossRef]
- Rosa, G.; Bosio, A.; Menossi, D.; Romeo, N. How the Starting Precursor Influences the Properties of Polycrystalline CuInGaSe2 Thin Films Prepared by Sputtering and Selenization. Energies 2016, 9, 354. [Google Scholar] [CrossRef] [Green Version]
- Park, J.C.; Al-Jassim, M.; Shin, S.W.; Kim, J.H.; Kim, T.W. Comprehensive characterization of CIGS absorber layers grown by one-step sputtering process. Ceram. Int. 2019, 45, 4424–4430. [Google Scholar] [CrossRef]
- Zhao, H.; Xie, J.; Mao, A.; Wang, A.; Chen, Y.; Liang, T.; Ma, D. Effects of Heating Mode and Temperature on the Microstructures, Electrical and Optical Properties of Molybdenum Thin Films. Materials 2018, 11, 1634. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rashid, H.; Rahman, K.S.; Hossain, M.I.; Nasser, A.A.; Alharbi, F.H.; Akhtaruzzaman, M.; Amin, N. Physical and electrical properties of molybdenum thin films grown by DC magnetron sputtering for photovoltaic application. Res. Phys. 2019, 14, 102515. [Google Scholar] [CrossRef]
- Gułkowski, S.; Krawczak, E. Experimental studies of thin films deposition by magnetron sputtering method for CIGS solar cell fabrication. E3S Web Conf. 2017, 19, 03006. [Google Scholar] [CrossRef] [Green Version]
- Zdyb, A.; Krawczak, E.; Gułkowski, S. The influence of annealing on the properties of ZnO:Al layers obtained by RF magnetron sputtering. Opto-Electron. Rev. 2018, 26, 247–251. [Google Scholar] [CrossRef]
- Krawczak, E.; Gułkowski, S. Electrical properties of aluminum contacts deposited by DC sputtering method for photovoltaic applications. E3S Web Conf. 2017, 19, 03011. [Google Scholar] [CrossRef] [Green Version]
- Luque, A.; Hegedus, S. (Eds.) Handbook of Photovoltaic Science and Engineering; John Wiley & Sons: Chichester, UK, 2003; ISBN 0-471-49196-9. [Google Scholar]
- Kong, H.; He, J.; Huang, L.; Zhu, L.; Sun, L.; Yang, P.; Chu, J. Effect of working pressure on growth of Cu(In,Ga)Se2 thin film deposited by sputtering from a single quaternary target. Mater. Lett. 2014, 116, 75–78. [Google Scholar] [CrossRef]
- Ayachi, B.; Aviles, T.; Vilcot, J.-P.; Sion, C.; Miska, P. Room temperature pulsed-DC sputtering deposition process for CIGS absorber layer: Material and device characterizations. Thin Solid Films 2018, 660, 175–179. [Google Scholar] [CrossRef]
- Toma, O.; Ion, L.; Iftimie, S.; Radu, A.; Antohe, S. Structural, morphological and optical properties of rf—Sputtered CdS thin films. Mater. Des. 2016, 100, 198–203. [Google Scholar] [CrossRef]
- Pethe, S.A.; Takahashi, E.; Kaul, A.; Dhere, N.G. Effect of sputtering process parameters on film properties of molybdenum back contact. Sol. Energy Mater. Sol. Cells 2012, 100, 1–5. [Google Scholar] [CrossRef]
- Chelvanathan, P.; Shahahmadi, S.A.; Arith, F.; Sobayel, K.; Aktharuzzaman, M.; Sopian, K.; Alharbi, F.H.; Tabet, N.; Amin, N. Effects of RF magnetron sputtering deposition process parameters on the properties of molybdenum thin films. Thin Solid Films 2017, 638, 213–219. [Google Scholar] [CrossRef]
- Su, C.-Y.; Liao, K.-H.; Pan, C.-T.; Peng, P.-W. The effect of deposition parameters and post treatment on the electrical properties of Mo thin films. Thin Solid Films 2012, 520, 5936–5939. [Google Scholar] [CrossRef]
- Liu, R.; Chen, Y.; Ding, S.; Li, Y.; Tian, Y. Preparation of highly transparent conductive aluminum-doped zinc oxide thin films using a low-temperature aqueous solution process for thin-film solar cells applications. Sol. Energy Mater. Sol. Cells 2019, 203, 110161. [Google Scholar] [CrossRef]
- Liang, G.-X.; Fan, P.; Chen, C.-M.; Zheng, Z.-H.; Zhang, D.-P. A promising sputtering for in situ fabrication of CIGS thin films without post-selenization. J. Alloys Compd. 2014, 610, 337–340. [Google Scholar] [CrossRef]
- Badgujar, A.C.; Dusane, R.O.; Dhage, S.R. Cu(In,Ga)Se2 thin film absorber layer by flash light post-treatment. Vacuum 2018, 153, 191–194. [Google Scholar] [CrossRef]
- Chen, C.-H.; Lin, T.-Y.; Hsu, C.-H.; Wei, S.-Y.; Lai, C.-H. Comprehensive characterization of Cu-rich Cu(In,Ga)Se2 absorbers prepared by one-step sputtering process. Thin Solid Films 2013, 535, 122–126. [Google Scholar] [CrossRef]
- Ouyang, L.; Zhao, M.; Zhuang, D.; Han, J.; Gao, Z.; Guo, L.; Li, X.; Sun, R.; Cao, M. Annealing treatment of Cu(In,Ga)Se2 absorbers prepared by sputtering a quaternary target for 13.5% conversion efficiency device. Sol. Energy 2015, 118, 375–383. [Google Scholar] [CrossRef]
- Frantz, J.A.; Bekele, R.Y.; Nguyen, V.Q.; Sanghera, J.S.; Bruce, A.; Frolov, S.V.; Cyrus, M.; Aggarwal, I.D. Cu(In,Ga)Se2 thin films and devices sputtered from a single target without additional selenization. Thin Solid Films 2011, 519, 7763–7765. [Google Scholar] [CrossRef]
- Yu, Z.; Yan, Y.; Li, S.; Zhang, Y.; Yan, C.; Liu, L.; Zhang, Y.; Zhao, Y. Significant effect of substrate temperature on the phase structure, optical and electrical properties of RF sputtered CIGS films. Appl. Surf. Sci. 2013, 264, 197–201. [Google Scholar] [CrossRef]
- Joshi, R.A.; Gupta, M.; Phase, D.M. Annealing induced modifications in physicochemical and optoelectronic properties of CdS/CuInGaSe2 thin film. Sol. Energy 2019, 177, 1–7. [Google Scholar] [CrossRef]
- Kim, D.; Park, Y.; Kim, M.; Choi, Y.; Park, Y.S.; Lee, J. Optical and structural properties of sputtered CdS films for thin film solar cell applications. Mater. Res. Bull. 2015, 69, 78–83. [Google Scholar] [CrossRef]
- Theelen, M.; Hendrikx, R.; Barreau, N.; Steijvers, H.; Böttger, A. The effect of damp heat-illumination exposure on CIGS solar cells: A combined XRD and electrical characterization study. Sol. Energy Mater. Sol. Cells 2016, 157, 943–952. [Google Scholar] [CrossRef]
- Krawczak, E.; Zdyb, A.; Gulkowski, S.; Fave, A.; Fourmond, E. Influence of sputtering deposition parameters on electrical and optical properties of aluminium-doped zinc oxide thin films for photovoltaic applications. E3S Web Conf. 2017, 22, 00090. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.; Lee, E.S.; Kim, T.Y.; Cho, J.S.; Eo, Y.J.; Yun, J.H.; Cho, A. Effect of annealing treatment on CdS/CIGS thin film solar cells depending on different CdS deposition temperatures. Sol. Energy Mater. Sol. Cells 2015, 141, 299–308. [Google Scholar] [CrossRef]
Layer | Power (W/cm2) | Temperature (°C) | Deposition Pressure (Pa) |
---|---|---|---|
Mo | 0.74–1.48 | 400 | 1.53 |
CIGS | 1.00 | 400 | 1.53 |
CdS | 1.00 | 200 | 1.53 |
i-ZnO | 2.00 | 200 | 1.00 |
ZnO:Al | 3.08–3.95 | RT | 0.285 |
Al | 0.74–1.24 | RT | 1.53 |
Pos. 2θ [°] | d-Spacing [Å] | FWHM [°] | Crystallite Size [Å] | |
---|---|---|---|---|
1 | 40.41 | 2.23 | 1.38 | 84.0 |
2 | 73.48 | 1.29 | 2.50 | 398.0 |
Pos. 2θ [°] | d-Spacing [Å] | FWHM [°] | Crystallite Size [Å] | |
---|---|---|---|---|
1 | 26.59 | 3.35 | 0.22 | 501 |
2 | 40.51 | 2.23 | 1.41 | 45 |
3 | 44.20 | 2.05 | 0.28 | 392 |
4 | 52.36 | 1.75 | 0.35 | 364 |
5 | 64.31 | 1.45 | 0.91 | 77 |
6 | 70.88 | 1.33 | 0.36 | 224 |
7 | 73.78 | 1.28 | 2.10 | 34 |
Pos. 2θ [°] | d-Spacing [Å] | FWHM [°] | Crystallite Size [Å] | |
---|---|---|---|---|
1 | 26.52 | 3.35 | 0.15 | 1908 |
2 | 40.25 | 2.23 | 1.05 | 63 |
3 | 47.91 | 1.90 | 0.35 | 205 |
4 | 54.66 | 1.68 | 0.17 | 513 |
N° | Calc. Pos. [°2Th.] Cu | d-Spacing [Å] | FWHM [°] | Crystallite Size [Å] |
---|---|---|---|---|
1 | 26.48 | 3.36 | 0.26 | 352 |
2 | 40.39 | 2.23 | 0.70 | 113 |
3 | 44.44 | 2.04 | 2.06 | 41 |
4 | 47.82 | 1.90 | 0.76 | 104 |
5 | 52.34 | 1.75 | 2.21 | 36 |
6 | 73.41 | 1.29 | 1.68 | 72 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gulkowski, S.; Krawczak, E. RF/DC Magnetron Sputtering Deposition of Thin Layers for Solar Cell Fabrication. Coatings 2020, 10, 791. https://doi.org/10.3390/coatings10080791
Gulkowski S, Krawczak E. RF/DC Magnetron Sputtering Deposition of Thin Layers for Solar Cell Fabrication. Coatings. 2020; 10(8):791. https://doi.org/10.3390/coatings10080791
Chicago/Turabian StyleGulkowski, Slawomir, and Ewelina Krawczak. 2020. "RF/DC Magnetron Sputtering Deposition of Thin Layers for Solar Cell Fabrication" Coatings 10, no. 8: 791. https://doi.org/10.3390/coatings10080791
APA StyleGulkowski, S., & Krawczak, E. (2020). RF/DC Magnetron Sputtering Deposition of Thin Layers for Solar Cell Fabrication. Coatings, 10(8), 791. https://doi.org/10.3390/coatings10080791