Fabrication of Superhydrophobic Wood Surface by Etching Polydopamine Coating with Sodium Hydroxide
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Methods
2.2.1. Wood Modified by PDA
2.2.2. Etching of the Wood@PDA with NaOH
2.2.3. Etching of the Wood@PDA with NaOH/SiO2
2.2.4. Low Surface Energy Treatment
2.3. Testing and Characterization
2.3.1. Surface Wettability of Superhydrophobic Wood
2.3.2. CIELab Color of Samples with Different Etching Time
2.3.3. Analysis of Surface Microstructure
2.3.4. Analysis of the Surface Resistance of Superhydrophobic Wood
2.3.5. Chemical Stability of Superhydrophobic Wood Surface
3. Results and Discussion
3.1. Analysis of Surface Wettability
3.2. Colorimetric Analysis of Wood Sample Surface
3.3. Surface Microstructure of Superhydrophobic Wood
3.4. Anti-Loss Analysis
3.5. Surface Chemical Stability
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gu, L.B. Current status and application prospects of wood modification. China Wood Ind. 2012, 26, 3. [Google Scholar]
- Huang, Y.H.; Feng, Q.M.; Ye, C.Y.; Sandeep, S.N.; Yan, N. Incorporation of ligno-cellulose nanofibrils and bark extractives in water-based coatings for improved wood protection. Prog. Org. Coat. 2020, 138, 105210. [Google Scholar] [CrossRef]
- Liu, M.; Wu, Y.Q.; Yan, Q.; Tian, C.H.; Luo, S.; Li, X.G. Progress in the research of functional modification on bionic fabrication of superhydrophobic wood. J. Funct. Mater. 2015, 46, 14012–14018. [Google Scholar]
- Liu, F.; Wang, C.Y. Research progress and preparation methods of biomimetic functional superhydrophobic wood surfaces. Sci. Technol. Rev. 2016, 34, 120–126. [Google Scholar]
- Jia, S.S.; Liu, M.; Wu, Y.Q.; Luo, S.; Qing, Y.; Chen, H.B. Facile and scalable preparation of highly wear-resistance superhydrophobic surface on wood substrates using silica nanoparticles modified by VTES. Appl. Surf. Sci. 2016, 386, 115–124. [Google Scholar] [CrossRef]
- Wang, K.L.; Dong, Y.M.; Yan, Y.T.; Zhang, W.; Qi, C.S.; Han, C.R.; Li, J.Z.; Zhang, S.F. Highly hydrophobic and self-cleaning bulk wood prepared by grafting long-chain alkyl onto wood cell walls. Wood Sci. Technol. 2016, 51, 395–411. [Google Scholar] [CrossRef]
- Gao, X.F.; Lei, J. Biophysics: Water-repellent legs of water striders. Nature 2004, 432, 36. [Google Scholar] [CrossRef]
- Sun, T.L.; Feng, L.; Gao, X.F.; Jiang, L. Bioinspired surfaces with special wettability. Acc. Chem. Res. 2005, 38, 644–652. [Google Scholar] [CrossRef]
- Neinhuis, C.; Barthlott, W. Characterization and distribution of water-repellent, self-cleaning plant surfaces. Ann. Bot. 1997, 79, 667–677. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.L.; Liu, C.Y.; Liu, G.C.; Zhang, M.; Li, J.; Wang, C.Y. Fabrication of superhydrophobic wood surface by a sol-gel process. Appl. Surf. Sci. 2011, 258, 806–810. [Google Scholar] [CrossRef]
- Shah, S.M.; Zulfiqar, U.; Hussain, S.Z.; Ahmad, I.; Rehman, H.U.; Hussain, I.; Subhani, T. A durable superhydrophobic coating for the protection of wood materials. Mater. Lett. 2017, 203, 17–20. [Google Scholar] [CrossRef]
- Kang, S.M.; You, I.; Cho, W.K.; Shon, H.K.; Lee, T.G.; Choi, I.S.; Karp, J.M.; Lee, H. One-step modification of superhydrophobic surfaces by a mussel-inspired polymer coating. Angew. Chem. Int. Ed. Engl. 2010, 49, 9401–9404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, Y.Q.; Jia, S.S.; Qing, Y.; Luo, S. A versatile and efficient method to fabricate durable superhydrophobic surfaces on wood, lignocellulosic fiber, glass, and metal substrates. J. Mater. Chem. A 2016, 4, 14111–14121. [Google Scholar] [CrossRef]
- Yang, Y.S.; Shen, H.J.; Qin, L.; Qiu, J. Biomimetic fabrication of lotus-leaf-like self-cleaning superhydrophobic wood surface with micro/nano-biomimetic structures using morph-genetic method. J. For. Eng. 2020, 5, 66–71. [Google Scholar]
- Che, Z.N.; Liu, G.C.; Guo, C.G.; Li, H.; Chen, R.J. Super-hydrophobic modification investigation for PTFE hollow fiber membrane surface based on the synergy of perfluorinated silane and alkylated SiO2. China Plast. Ind. 2020, 48, 19–23. [Google Scholar]
- Ntelia, E.; Karapanagiotis, I. Superhydrophobic paraloid B72. Prog. Org. Coat. 2020, 139, 105224. [Google Scholar] [CrossRef]
- Bohinc, K.; Dražić, G.; Fink, R.; Oder, M.; Jevšnik, M.; Nipič, D.; Godič-Torkar, K.; Raspor, P. Available surface dictates microbial adhesion capacity. Int. J. Adhes. Adhes. 2014, 50, 265–272. [Google Scholar] [CrossRef]
- Yue, D.; Feng, Q.F.; Huang, X.T.; Zhang, X.X.; Chen, H.X. In situ fabrication of a superhydrophobic ORMOSIL coating on wood by an ammonia–HMDS vapor treatment. Coatings 2019, 9, 556. [Google Scholar] [CrossRef] [Green Version]
- Ghazali, N.; Basirun, W.J.; Nor, A.M.; Johan, M.R. Super-amphiphobic coating system incorporating functionalized nano-Al2O3 in polyvinylidene fluoride (PVDF) with enhanced corrosion resistance. Coatings 2020, 10, 387. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.N.; Deng, Z.W. Progress in research and application of mussel-inspired adhesive dopamine. Polym. Mater. Sci. Eng. 2015, 31, 185–190. [Google Scholar]
- Guo, Q.; Chen, J.S.; Wang, J.L.; Zeng, H.G.; Yu, J. Recent progress in synthesis and application of mussel-inspired adhesives. Nanoscale 2020, 12, 1307–1324. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.X.; Yang, H.C.; He, F.; Peng, S.Q.; Li, Y.X.; Shao, L.; Darling, S.B. Mussel-inspired surface engineering for water-remediation materials. Matter 2019, 1, 115–155. [Google Scholar] [CrossRef] [Green Version]
- Jiang, L.; Jin, G.C.; Kang, J.Y.; Yu, L.M.; Yoon, W.; Lim, M.J.; Par, K.I.; Lee, M.; Jin, D.C. Surface characteristics of mussel-inspired polydopamine coating on titanium substrates. J. Wuhan Univ. Technol. 2014, 29, 197–200. [Google Scholar] [CrossRef]
- Sun, Y.J.; Zhang, L.J.; Zhao, Y.Q.; Tang, Z.H.; Duan, S. Functionalized dental implants with antibacterial surface based on surface initiated polymerization. Surf. Technol. 2019, 48, 237–240. [Google Scholar]
- Zhang, C.; Gong, L.; Xiang, L.; Du, Y.; Hu, W.J.H.; Zeng, H.B.; Xu, Z.K. Deposition and adhesion of polydopamine on the surfaces of varying wettability. ACS Appl. Mater. Interf. 2017, 9, 30943–30950. [Google Scholar] [CrossRef]
- Ponzio, F.; Barthes, J.; Bour, J.; Michel, M.; Bertani, P.; Hemmerlé, J.; d’lschia, M.; Vincent, B. Oxidant control of polydopamine surface chemistry in acids: A mechanism-based entry to superhydrophilic-superoleophobic coatings. Chem. Mater. 2016, 28, 4697–4705. [Google Scholar] [CrossRef]
- Xue, C.H.; Deng, L.Y.; Jia, S.T.; Wei, P.B. Fabrication of superhydrophobic aromatic cotton fabrics. RSC Adv. 2016, 6, 107364–107369. [Google Scholar] [CrossRef]
- Wang, K.L.; Dong, Y.M.; Yan, Y.T.; Zhang, S.F. Mussel-inspired chemistry for preparation of superhydrophobic surfaces on porous substrates. RSC Adv. 2017, 7, 29149–29158. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.; Dellatore, S.M.; Miller, W.M.; Miller, W.M.; Messersmith, P.B. Mussel-inspired surface chemistry for multifunctional coatings. Science 2007, 318, 426–430. [Google Scholar] [CrossRef] [Green Version]
- Tan, G.X.; Ouyang, K.Y.; Zhou, L.; Liu, Y.; Fan, J.D.; Li, W.P.; Zhang, L.; Ning, C.Y. The mechanism of pH-induced polydopamine films surface protonation and cell adhesion behavior. Sci. Sin. 2016, 46, 373–381. [Google Scholar]
- Della Vecchia, N.F.; Luchini, A.; Napolitano, A.; D’Errico, G.; Vitiello, G.; Szekely, N.; d’Ischia, M.; Paduano, L. Tris buffer modulates polydopamine growth, aggregation, and paramagnetic properties. Langmuir 2014, 30, 9811–9818. [Google Scholar] [CrossRef] [PubMed]
- Wei, H.L.; Ren, J.; Han, B.; Xu, L.; Han, L.L.; Jia, L.Y. Stability of polydopamine and poly(DOPA) melanin-like films on the surface of polymer membranes under strongly acidic and alkaline conditions. Coll. Surf. B Biointerf. 2013, 110, 22–28. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Richter, J.; Tywoniak, J.; Hajek, P.; Adamopoulos, S.; Šegedin, U.; Petrič, M. Surface modification of Norway spruce wood by octadecyltrichlorosilane (OTS) nanosol by dipping and water vapour diffusion properties of the OTS-modified wood. Holzforschung 2018, 72, 45–56. [Google Scholar] [CrossRef]
- Wang, Z.L.; Ou, J.F.; Wang, Y.; Xue, M.S.; Wang, F.J.; Pan, B.; Li, C.Q.; Li, W. Anti-bacterial superhydrophobic silver on diverse substrates based on the mussel-inspired polydopamine. Surf. Coat. Technol. 2015, 280, 378–383. [Google Scholar] [CrossRef]
- Qin, Z.Y.; Zhang, Q.; Gao, Q.; Li, J.Z. Wettability of sanded and aged fast-growing poplar wood surfaces: II. dynamic wetting models. Bioresources 2014, 9, 7176–7188. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.L.; Li, B.C.; Li, Z.J.; Ren, K.F.; Jin, L.J.; Zhang, S.M.; Chang, H.; Sun, Y.X.; Ji, J. Electropolymerization of dopamine for surface modification of complex-shaped cardiovascular stents. Biomaterials 2014, 35, 7679–7689. [Google Scholar] [CrossRef]
- Su, X.; Peng, Y.F. Theoretical progress of superhydrophobic surfaces and its influencing factors. J. Funct. Mater. 2016, 47, 1–9. [Google Scholar]
- Lou, S. Fabrication and Test of Superhydrophobic Surfaces Modified by Silicon Materials. Master’s Thesis, Tianjin University, Tianjin, China, May 2018. [Google Scholar]
Pretest Sample | Treatment Time | Temperature | Solution | Oven-Dried Time and (Temperature) | Posttest Sample |
---|---|---|---|---|---|
Wood | 24 h | 60 °C | DA | 24 h (60 °C) | Wood@PDA |
Wood@PDA | 5 min–5 h | Room Temperature | NaOH | 24 h (60 °C) | Wood@PDA–NaOH |
Wood@PDA | 5 min–5 h | Room Temperature | NaOH/SiO2 | 24 h (60 °C) | Wood@PDA–NaOH/SiO2 |
Etching Time | L* | a* | b* | △E* |
---|---|---|---|---|
0 min | 21.40 (1.29) | 11.20 (3.07) | 4.23 (1.32) | 74.32 (1.69) |
5 min | 22.91 (0.63) | 11.03 (5.96) | 6.51 (1.48) | 73.02 (1.68) |
30 min | 24.40 (0.60) | 20.12 (1.31) | 5.42 (0.76) | 73.39 (0.96) |
1 h | 26.61 (0.68) | 18.29 (1.97) | 7.99 (0.40) | 70..86 (1.12) |
2 h | 28.65 (0.30) | 11.89 (2.12) | 14.47 (0.19) | 68.32 (0.54) |
5 h | 32.58 (0.78) | 30.29 (7.61) | 17.21 (3.91) | 68.27 (5.61) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yi, Z.; Zhao, B.; Liao, M.; Qin, Z. Fabrication of Superhydrophobic Wood Surface by Etching Polydopamine Coating with Sodium Hydroxide. Coatings 2020, 10, 847. https://doi.org/10.3390/coatings10090847
Yi Z, Zhao B, Liao M, Qin Z. Fabrication of Superhydrophobic Wood Surface by Etching Polydopamine Coating with Sodium Hydroxide. Coatings. 2020; 10(9):847. https://doi.org/10.3390/coatings10090847
Chicago/Turabian StyleYi, Zede, Bo Zhao, Murong Liao, and Zhiyong Qin. 2020. "Fabrication of Superhydrophobic Wood Surface by Etching Polydopamine Coating with Sodium Hydroxide" Coatings 10, no. 9: 847. https://doi.org/10.3390/coatings10090847
APA StyleYi, Z., Zhao, B., Liao, M., & Qin, Z. (2020). Fabrication of Superhydrophobic Wood Surface by Etching Polydopamine Coating with Sodium Hydroxide. Coatings, 10(9), 847. https://doi.org/10.3390/coatings10090847