Effect of Fluorine Incorporation on DLC Films Deposited by Pulsed Cathodic Arc Deposition on Nitrile Butadiene Rubber and Polyurethane Rubber Substrates
Abstract
:1. Introduction
2. Experimental Methods
3. Results and Discussion
4. Conclusions
- The surface morphologies of deposited DLC and F-DLC thin films exhibit cracked network features. The size of cracked segments shows a substrate dependence, where 2–4 μm segments are observed on the NBR substrate and less than 1 μm segments are found on the PU rubber substrate. This phenomenon is caused by thermal mismatch stress between the films and substrates. Raman spectroscopy is applied to all the deposited samples and typical DLC film features are characterized. Deposited DLC and F-DLC films have similar amounts of graphite cluster content in the film structure. The incorporation of fluorine does not present noticeable effects on film morphologies and chemical structures. In addition, the deposited films on PU rubber substrates have smoother surfaces compared to the films deposited on NBR substrates as a result of the cracked segment size.
- The tribological performances are tested under a dry sliding friction condition. It is evident that the COFs of deposited films are more than 60% lower than the uncoated substrates: a decrease from approximately 1.3 to 0.3 for NBR and from approximately 1.6 to 0.6 for PU rubber. The wear track morphologies are also studied by SEM microscopy. Both DLC and F-DLC thin film deposited on NBR substrates remain intact and no clear wear tracks are observed after the tribo-test. However, the films deposited on the PU rubber substrates show peeling offs and adhesive wear tracks after the tribo-test and the incorporation of fluorine worsens the friction wear condition. The films deposited on the NBR substrates have higher surface roughness compared with the films deposited on the PU rubber substrates. The COFs of tested films present a contrary trend where the smoother films (films deposited on the PU rubber) have higher COF values. This is caused by the adhesive wears and peeling offs formed during the tribo-tests.
- The incorporation of fluorine improves film hydrophobicity for DLC films deposited on PU rubber substrate, where surface roughness does not play a dominant role in influencing film hydrophobicity properties, as is the case for films deposited on NBR substrates.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Mutyala, K.C.; Wu, Y.A.; Erdemir, A.; Sumant, A.V. Graphene—MoS2 ensembles to reduce friction and wear in DLC—Steel contacts. Carbon 2019, 146, 524–527. [Google Scholar] [CrossRef]
- Khamseh, S.; Alibakhshi, E.; Mahdavian, M.; Saeb, M.R.; Vahabi, H.; Kokanyan, N.; Laheurte, P. Magnetron-sputtered copper/diamond-like carbon composited thin film with super anti-corrosion properties. Surf. Coat. Technol. 2018, 333, 148–157. [Google Scholar] [CrossRef]
- Solis, J.; Zhao, H.; Wang, C.; Verduzco, J.A.; Bueno, A.S.; Neville, A. Tribological performance of an H-DLC coating prepared by PECVD. Appl. Surf. Sci. 2016, 383, 222–232. [Google Scholar] [CrossRef]
- Li, A.; Chen, Q.; Wu, G.; Wang, Y.; Lu, Z.; Zhang, G. Probing the lubrication mechanism of multilayered Si-DLC coatings in water and air environments. Diam. Relat. Mater. 2020, 105, 107772. [Google Scholar] [CrossRef]
- Kumar, C.S.; Majumder, H.; Khan, A.; Patel, S.K. Applicability of DLC and WC/C low frication coatings on Al2O3/TiCN mixed ceramic cutting tools for dry machining of hardened 52100 steel. Ceram. Int. 2020, 46, 11889–11897. [Google Scholar] [CrossRef]
- Strmčnik, E.; Majdič, F.; Kalin, M. Water-lubricated behaviour of AISI 440C stainless steel and a DLC coating for an orbital hydraulic motor application. Tribol. Int. 2019, 131, 128–136. [Google Scholar] [CrossRef]
- Choleridis, A.; Sao-Joao, S.; Ben-Mohamed, J.; Chern, D.; Barnier, V.; Kermouche, G.; Heau, C.; Leroy, M.A.; Fontaine, J.; Descartes, S.; et al. Experimental study of wear-induced delamination for DLC coated automotive components. Surf. Coat. Technol. 2018, 352, 549–560. [Google Scholar] [CrossRef]
- Liu, J.Q.; Wu, Z.Y.; Cao, H.T.; Wen, F.; Pei, Y.T. Effect of bias voltage on the tribological and sealing properties of rubber seals modified by DLC films. Surf. Coat. Technol. 2019, 360, 391–399. [Google Scholar] [CrossRef]
- Trippe, S.C.; Mansano, R.D.; Costa, F.M.; Silva, R.F. Mechanical properties evaluation of fluor-doped diamond-like carbon coatings by nanoindentation. Thin Solid Films 2004, 446, 85–90. [Google Scholar] [CrossRef]
- Jelinek, M.; Zemek, J.; Remsa, J.; Miksovsky, J.; Kocourek, T.; Pisarik, P.; Travnickova, M.; Filova, E.; Bacakova, L. Hybrid laser technology and doped biomaterials. Appl. Surf. Sci. 2017, 417, 73–83. [Google Scholar] [CrossRef]
- Santiago, J.A.; Fernandez-Martinez, I.; Sanchez-Lopez, J.C.; Rojas, T.C.; Wennberg, A.; Bellido-Gonzalez, V.; Molina-Aldareguia, J.M.; Monclus, M.A.; Gonzalez-Arrabal, R. Tribomechanical properties of hard Cr-doped DLC coatings deposited by low-frequency HiPIMS. Surf. Coat. 2020, 382, 124899. [Google Scholar] [CrossRef]
- Moriguchi, H.; Ohara, H.; Tsujioka, M. History and applications of diamond-like carbon manufacturing process. Sei Tech. Rev. 2016, 82, 52–58. [Google Scholar]
- Tsubone, D.; Hasebe, T.; Kamijo, A.; Hotta, A. Fracture mechanics of diamond-like carbon (DLC) films coated on flexible polymer substrates. Surf. Coat. Technol. 2007, 201, 6423–6430. [Google Scholar] [CrossRef]
- Bui, X.L.; Pei, Y.T.; Mulder, E.D.G.; De Hosson, J.T.M. Adhesion improvement of hydrogenated diamond-like carbon thin films by pre-deposition plasma treatment of rubber substrate. Surf. Coat. Technol. 2009, 203, 1964–1970. [Google Scholar] [CrossRef] [Green Version]
- Nobili, L.; Guglielmini, A. Thermal stability of mechanical properties of fluorinated diamond-like carbon coatings. Surf. Coat. Technol. 2013, 219, 144–150. [Google Scholar] [CrossRef]
- Hasebe, T.; Matsuoka, Y.; Kodama, H.; Saito, T.; Yohena, S.; Kamijo, A.; Shiraga, N.; Higuchi, M.; Kuribayashi, S.; Takahashi, K.; et al. Lubrication performance of diamond-like carbon and fluorinated diamond-like carbon coatings for intravascular guidewires. Diam. Relat. Mater. 2006, 15, 129–132. [Google Scholar] [CrossRef]
- Yu, G.Q.; Tay, B.K.; Sun, Z. Fluorinated amorphous diamond-like carbon films deposited by plasma-enhanced chemical vapor deposition. Surf. Coat. Technol. 2005, 191, 236–241. [Google Scholar] [CrossRef]
- Wang, J.; Ma, J.; Huang, W.; Wang, L.; He, H.; Liu, C. The investigation of the structures of tribological properties of F-DLC coatings deposited on Ti-6Al-4V alloys. Surf. Coat. Technol. 2017, 316, 22–29. [Google Scholar] [CrossRef]
- Imai, T.; Harigai, T.; Tanimoto, T.; Isono, R.; Iijima, Y.; Suda, Y.; Takikawa, H.; Kamiya, M.; Taki, M.; Hasegawa, Y.; et al. Hydrogen-free fluorinated DLC films with high hardness prepared by using T-shape filtered arc deposition system. Vacuum 2019, 167, 536–541. [Google Scholar] [CrossRef]
- Lin, Y.H.; Syue, Y.C.; Lin, H.D.; Chen, U.S.; Chang, Y.S.; Chen, J.R.; Shih, H.C. Modifying the properties of fluorinated amorphous films using argon by filtered cathodic vacuum arc. Appl. Surf. Sci. 2008, 255, 2139–2142. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, F.; Qiang, L.; Gao, K.; Zhang, B.; Zhang, J. Recent advances in the mechanical and tribological properties of fluorine-containing DLC films. RSC Adv. 2015, 5, 9635–9649. [Google Scholar] [CrossRef]
- Zhang, L.; Zong, X.; Yuan, X.; Xing, X. Effects of polyurethane substrates pre-treatment on pulsed cathodic arc deposited DLC films. Coatings 2020, 10, 545. [Google Scholar] [CrossRef]
- Pei, Y.T.; Bui, X.L.; Van der Pal, J.P.; Martinez, D.M.; De Hosson, J.T.M. Flexible diamond-like carbon film coated on rubber. Prog. Org. Coat. 2013, 76, 1773–1778. [Google Scholar] [CrossRef] [Green Version]
- Ferrari, A.C.; Robertson, J. Raman spectroscopy of amorphous, nanostructured, diamond-like carbon, and nanodiamond. Philos. Trans. R. Soc. A 2004, 362, 2477–2512. [Google Scholar] [CrossRef] [PubMed]
- Ferrari, A.C.; Robertson, J. Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B 2000, 61, 14095. [Google Scholar] [CrossRef] [Green Version]
- Robertson, J. Diamond-like amorphous carbon. Mater. Sci. Eng. R. 2002, 37, 129–281. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.M.; Liu, J.Q.; Gao, H.T.; WU, Z.Y.; Wang, Q.; Ma, Y.P.; Jiang, H.; Wen, F.; Pei, Y.T. On the adhesion and wear resistance of DLC films deposited on nitrilebutadiene rubber: A Ti-C interlayer. Diam. Relat. Mater. 2020, 101, 107563. [Google Scholar] [CrossRef]
- Pei, Y.T.; Bui, X.L.; Van der Pal, J.P.; Martinez, D.M.; Zhou, X.B.; De Hosson, J.T.M. Flexible diamond-like carbon films on rubber: On the origin of self-acting segmentation and film flexibility. Acta Mater. 2012, 60, 5526–5535. [Google Scholar] [CrossRef] [Green Version]
- Ishihara, M.; Kosaka, T.; Nakamura, T.; Tsugawa, K.; Hasegawa, M.; Kokai, F.; Koga, Y. Antibacterial activity of fluorine incorporated DLC films. Diam. Relat. Mater. 2006, 15, 1011–1014. [Google Scholar] [CrossRef]
- Marciano, F.R.; Lima-Oliveira, D.A.; Da-Silva, N.S.; Corat, E.J.; Trava-Airoldi, V.J. Antibacterial activity of fluorinated diamond-like carbon films produced by PECVD. Surf. Coat. Technol. 2010, 204, 2986–2990. [Google Scholar] [CrossRef]
- Butter, R.S.; Waterman, D.R.; Lettington, A.H.; Ramos, R.T.; Fordham, E.J. Production of wetting properties of fluorinated diamond-like carbon coatings. Thin Solid Films 1997, 311, 107–113. [Google Scholar] [CrossRef]
Substrate | Voltage (V) | Ar/C4F8 Flow Rate (sccm) | Arc Frequency (Hz) | Thickness (nm) | F (at. %) | C (at. %) |
---|---|---|---|---|---|---|
NBR | 280 | 4/0 | 3 | 295 | 0 | 100 |
NBR | 280 | 4/4 | 3 | 308 | 4 | 96 |
PU rubber | 280 | 4/0 | 3 | 289 | 0 | 100 |
PU rubber | 280 | 4/4 | 3 | 298 | 4 | 96 |
Material | Contact Angle (°) | Material | Contact Angle (°) |
---|---|---|---|
Uncoated NBR | 109.2 | Uncoated PU rubber | 89.3 |
DLC on NBR | 110.9 | DLC on PU rubber | 98.8 |
F-DLC on NBR | 112.3 | F-DLC on PU rubber | 117.5 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, L.; Zong, X.; Guo, F.; He, B.; Yuan, X. Effect of Fluorine Incorporation on DLC Films Deposited by Pulsed Cathodic Arc Deposition on Nitrile Butadiene Rubber and Polyurethane Rubber Substrates. Coatings 2020, 10, 878. https://doi.org/10.3390/coatings10090878
Zhang L, Zong X, Guo F, He B, Yuan X. Effect of Fluorine Incorporation on DLC Films Deposited by Pulsed Cathodic Arc Deposition on Nitrile Butadiene Rubber and Polyurethane Rubber Substrates. Coatings. 2020; 10(9):878. https://doi.org/10.3390/coatings10090878
Chicago/Turabian StyleZhang, Lijie, Xuemei Zong, Fei Guo, Bing He, and Xiaoming Yuan. 2020. "Effect of Fluorine Incorporation on DLC Films Deposited by Pulsed Cathodic Arc Deposition on Nitrile Butadiene Rubber and Polyurethane Rubber Substrates" Coatings 10, no. 9: 878. https://doi.org/10.3390/coatings10090878
APA StyleZhang, L., Zong, X., Guo, F., He, B., & Yuan, X. (2020). Effect of Fluorine Incorporation on DLC Films Deposited by Pulsed Cathodic Arc Deposition on Nitrile Butadiene Rubber and Polyurethane Rubber Substrates. Coatings, 10(9), 878. https://doi.org/10.3390/coatings10090878