Preliminary Study of the Targeted Cleaning of an Artificial Gypsum Layer on White Marble
Abstract
:1. Introduction
2. Experimental
2.1. Sample Preparation
2.2. Characterization
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Pozo-Antonio, J.S.; Ramil, A.; Rivas, T.; López, A.J.; Fiorucci, M.P. Effectiveness of chemical, mechanical and laser cleaning methods of sulphated black crusts developed on granite. Constr. Build. Mater. 2016, 112, 682–690. [Google Scholar] [CrossRef]
- Suzuki, A.; Vettori, S.; Giorgi, S.; Carretti, E.; Di Benedetto, F.; Dei, L.; Benvenuti, M.; Moretti, S.; Pecchioni, E.; Costagliola, P. Laboratory study of the sulfation of carbonate stones through SWIR hyperspectral investigation. J. Cult. Herit. 2018, 32, 30–37. [Google Scholar] [CrossRef]
- Ordóñez, S.; La Iglesia, Á.; Louis, M.; García-del-Cura, M.Á. Mineralogical evolution of salt over nine years, after removal of efflorescence and saline crusts from Elche’s Old Bridge (Spain). Constr. Build. Mater. 2016, 112, 343–345. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, F.W.; Zuo, G.F.; Zhang, R.X.; Wei, G.F.; Ma, Q. Protection of the surface weathering stone artworks by a chemical conversion method. Constr. Build. Mater. 2018, 182, 210–214. [Google Scholar] [CrossRef]
- Mooers, H.D.; Carlson, M.J.; Harrison, R.M.; Inkpen, R.J.; Loeffler, S. Correlation of gravestone decay and air quality 1960-2010. Atmos. Environ. 2017, 152, 156–171. [Google Scholar] [CrossRef] [Green Version]
- Comite, V.; Álvarez de Buergo, M.; Barca, D.; Belfiore, C.M.; Bonazza, A.; La Russa, M.F.; Pezzino, A.; Randazzo, L.; Ruffolo, S.A. Damage monitoring on carbonate stones: Field exposure tests contributing to pollution impact evaluation in two Italian sites. Constr. Build. Mater. 2017, 152, 907–922. [Google Scholar] [CrossRef]
- Iqbal, M. Perception of darkening of stone façades and the need for cleaning. Int. J. Sus. Built. Environ. 2013, 2, 65–72. [Google Scholar] [CrossRef] [Green Version]
- Moropoulou, A.; Kefalonitou, S. Efficiency and countereffects of cleaning treatment on limestone surfaces—investigation on the Corfu Venetian Fortress. Build. Environ. 2002, 37, 1181–1191. [Google Scholar] [CrossRef]
- Dei, L.; Baglioni, P.; Sarti, G.; Ferroni, E. Aging effects on ammonium carbonate/acetone solutions and cleaning of works of art. Stud. Conserv. 1996, 41, 9–18. [Google Scholar] [CrossRef]
- van Hees, R.; Veiga, R.; Slížková, Z. Consolidation of renders and plasters. Mater. Struct. 2017, 50, 65. [Google Scholar] [CrossRef] [Green Version]
- Senesi, G.S.; Allegretta, I.; Porfido, C.; De Pascale, O.; Terzano, R. Application of micro X-ray fluorescence and micro computed tomography to the study of laser cleaning efficiency on limestone monuments covered by black crusts. Talanta 2018, 178, 419–425. [Google Scholar] [CrossRef] [PubMed]
- Grossi, C.M.; Benavente, D. Colour changes by laser irradiation of reddish building limestones. Appl. Surf. Sci. 2016, 384, 525–529. [Google Scholar] [CrossRef] [Green Version]
- Godet, M.; Vergès-Belmin, V.; Gauquelin, N.; Saheb, M.; Monnier, J.; Leroy, E.; Bourgon, J.; Verbeeck, J.; Andraud, C. Nanoscale investigation by TEM and STEM-EELS of the laser induced yellowing. Micron 2018, 115, 25–31. [Google Scholar] [CrossRef] [PubMed]
- Carvalhão, M.; Dionísio, A. Evaluation of mechanical soft-abrasive blasting and chemical cleaning methods on alkyd-paint graffiti made on calcareous stones. J. Cult. Herit. 2015, 16, 579–590. [Google Scholar] [CrossRef]
- Iglesias-Campos, M.Á.; Prada Pérez, J.L.; García Fortes, S. Spot analysis to determine technical parameters of microblasting cleaning for building materials maintenance. Constr. Build. Mater. 2017, 132, 21–32. [Google Scholar] [CrossRef]
- Yu, D.M.; Guan, B.W.; He, R.; Xiong, R.; Liu, Z.Z. Sulfate attack of Portland cement concrete under dynamic flexural loading: A coupling function. Constr. Build. Mater. 2016, 115, 478–485. [Google Scholar] [CrossRef]
- Carmona-Quiroga, P.M.; Blanco-Varela, M.T. Use of barium carbonate to inhibit sulfate attack in cements. Cement Concrete Res. 2015, 69, 96–104. [Google Scholar] [CrossRef] [Green Version]
- CIE Standard Illuminants for Colorimetry—Part 2: CIE Standard Illuminants; BS ISO 10526-2007; CIE Central Bureau: London, UK, 2007.
- Test Methods for Natural Facing Stones—Part 3: Test Methods for Bulk Density, True Density, True Porosity and Water Absorption; GB/T 9966.3-2001; General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China: Beijing, China, 2001.
- De Kock, T.; Van Stappen, J.; Fronteau, G.; Boone, M.; De Boever, W.; Dagrain, F.; Silversmit, G.; Vincze, L.; Cnudde, V. Laminar gypsum crust on lede stone: Microspatial characterization and laboratory acid weathering. Talanta 2017, 162, 193–202. [Google Scholar] [CrossRef] [Green Version]
- Lamhasni, T.; El-Marjaoui, H.; El Bakkali, A.; Ait Lyazidi, S.; Haddad, M.; Ben-Ncer, A.; Benyaich, F.; Bonazza, A.; Tahri, M. Air pollution impact on architectural heritage of Morocco: Combination of synchronous fluorescence and ATR-FTIR spectroscopies for the analyses of black crusts deposits. Chemosphere 2019, 225, 517–523. [Google Scholar] [CrossRef]
- Tang, J.H.; Bullard, J.W.; Perry, L.N.; Feng, P.; Liu, J.P. An empirical rate law for gypsum powder dissolution. Chem. Geol. 2018, 498, 96–105. [Google Scholar] [CrossRef]
- Petrou, A.L.; Terzidaki, A. Calcium carbonate and gypsum precipitation, crystallization and dissolution: Evidence for the activated steps and the mechanisms from the enthalpy and entropy of activation values. Chem. Geo. 2014, 381, 144–153. [Google Scholar] [CrossRef]
- Torres, E.; Lozano, A.; Macías, F.; Gomez-Arias, A.; Castillo, J.; Ayora, C. Passive elimination of sulfate and metals from acid mine drainage using combined limestone and barium carbonate systems. J. Clean Prod. 2018, 182, 114–123. [Google Scholar] [CrossRef]
Samples | Surface Composition | Color Difference (∆E) | Capillary Suction (%) |
---|---|---|---|
Marble | Calcite | - | 0.08 (±0.03) |
Marble with gypsum layer | Calcium sulphate | 3.6 (±0.02) | 0.10 (±0.02) |
Marble after removal of the gypsum layer | Calcite | 0.8 (±0.03) | 0.09 (±0.02) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Dong, T.; Zhang, K.; Yang, F.; Wang, L. Preliminary Study of the Targeted Cleaning of an Artificial Gypsum Layer on White Marble. Coatings 2021, 11, 37. https://doi.org/10.3390/coatings11010037
Liu Y, Dong T, Zhang K, Yang F, Wang L. Preliminary Study of the Targeted Cleaning of an Artificial Gypsum Layer on White Marble. Coatings. 2021; 11(1):37. https://doi.org/10.3390/coatings11010037
Chicago/Turabian StyleLiu, Yan, Taoling Dong, Kun Zhang, Fuwei Yang, and Liqin Wang. 2021. "Preliminary Study of the Targeted Cleaning of an Artificial Gypsum Layer on White Marble" Coatings 11, no. 1: 37. https://doi.org/10.3390/coatings11010037
APA StyleLiu, Y., Dong, T., Zhang, K., Yang, F., & Wang, L. (2021). Preliminary Study of the Targeted Cleaning of an Artificial Gypsum Layer on White Marble. Coatings, 11(1), 37. https://doi.org/10.3390/coatings11010037