Controlling Fusarium oxysporum Tomato Fruit Rot under Tropical Condition Using Both Chitosan and Vanillin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fruit Materials
2.2. Pathogen Inoculation
2.3. Preparation of Coating Solutions
2.4. Postharvest Coating Treatments
2.5. Determination of Disease Incidence
2.6. Determination of Disease Severity
2.7. Determination of Antioxidant Capacity and Activity
2.7.1. Supernatant Extraction
2.7.2. Determination of Total Phenolic Content
2.8. Antioxidant Activity and Capacity
2.8.1. ABTS (2,2-Azino-bis(3-ethylbenzthiazoline-6-sulfonic acid)
2.8.2. Ferric Reducing Antioxidant Power
2.9. Determination of Defense Enzymes Activities
2.9.1. Protein Content
2.9.2. Determination of Phenylalanine Ammonia-Lyase (PAL) Enzyme Activity
- 3 = total sample volume (mL)
- df = dilution factor (weight/volume 50 mg/2 mL = 25)
- 19.73 = mM extinction coefficient of trans-cinnamate at 270 nm
- unit definition: one unit will deaminate 1.0 µM of L-phenylalanine to trans-cinnamate and NH3 per minute at pH 8.5 at 30 °C.
2.9.3. Determination of Peroxidase Activity
2.9.4. Determination of Polyphenol Oxidase Activity
2.10. Experimental Design and Statistical Analysis
3. Results
3.1. Disease Incidence and Diseases Severity
3.2. Total Phenolic Content
3.3. Antioxidant Capacity (FRAP and ABTS)
3.4. Defense-Related Enzyme (PAL, PPO and POD) Activity
4. Discussion
4.1. Disease Incidence and Severity
4.2. Total Phenolic Content
4.3. Antioxidant Activity and Capacity
4.4. Effects of Coating on the Activity of Defense-Related Enzymes (PAL, PPO and POD)
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Garuba, T.; Mustapha, O.; Oyeyiola, G. Shelf life and proximate composition of tomato (Solanum lycopersicum L.) fruits as influenced by storage methods. Ceylon J. Sci. 2018, 47, 387. [Google Scholar] [CrossRef]
- Sun, C.; Jin, L.; Cai, Y.; Huang, Y.; Zheng, X.; Yu, T. l-Glutamate treatment enhances disease resistance of tomato fruit by inducing the expression of glutamate receptors and the accumulation of amino acids. Food Chem. 2019, 293, 263–270. [Google Scholar] [CrossRef]
- Elive, L.L. Postharvest Losses of Tomato (Lycopersicum esculentum) and Handling Practices in Wotuto, South West Region Cameron. Ph.D. Thesis, Pan African Institute for Development West Africa Cameroon, Buea, Cameroon, 2018. [Google Scholar]
- Emana, B.; Afari-Sefa, V.; Nenguwo, N.; Ayana, A.; Kebede, D.; Mohammed, H. Characterization of pre- and postharvest losses of tomato supply chain in Ethiopia. Agric. Food Secur. 2017, 6, 87. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Gao, Y.; Yang, H.; Li, L.; Jiang, Y.; Li, Y.; Zheng, J. Pichia kudriavzevii retards fungal decay by influencing the fungal community succession during cherry tomato fruit storage. Food Microbiol. 2020, 88, 103404. [Google Scholar] [CrossRef] [PubMed]
- Bakar, A.A.; Izzati, M.N.A.; Kalsom, Y. Diversity of Fusarium species associated with postharvest fruit rot disease of tomato. Sains Malays. 2013, 42, 911–920. [Google Scholar]
- Bouzoumita, A.; Metoui, M.; Jemni, M.; Kabaeir, N.; Belhouchette, K.; Ferchichi, A. The Efficacy of Various Bacterial Organisms for Biocontrol of Fusarium Root Rot of Olive in Tunisia. Pol. J. Environ. Stud. 2019, 29, 11–16. [Google Scholar] [CrossRef]
- Medina-Romero, Y.M.; Roque-Flores, G.; Macías-Rubalcava, M.L. Volatile organic compounds from endophytic fungi as innovative postharvest control of Fusarium oxysporum in cherry tomato fruits. Appl. Microbiol. Biotechnol. 2017, 101, 8209–8222. [Google Scholar] [CrossRef] [PubMed]
- Zheng, F.; Zheng, W.; Li, L.; Pan, S.; Liu, M.; Zhang, W.; Liu, H.; Zhu, C. Chitosan Controls Postharvest Decay and Elicits Defense Response in Kiwifruit. Food Bioprocess Technol. 2017, 10, 1937–1945. [Google Scholar] [CrossRef]
- Munhuweyi, K.; Lennox, C.L.; Meitz-Hopkins, J.C.; Caleb, O.J.; Sigge, G.O.; Opara, U.L. Investigating the effects of crab shell chitosan on fungal mycelial growth and postharvest quality attributes of pomegranate whole fruit and arils. Sci. Hortic. 2017, 220, 78–89. [Google Scholar] [CrossRef]
- Liu, J.; Tian, S.; Meng, X.; Xu, Y. Effects of chitosan on control of postharvest diseases and physiological responses of tomato fruit. Postharvest Biol. Technol. 2007, 44, 300–306. [Google Scholar] [CrossRef]
- Kuwar, U.; Sharma, S.; Tadapaneni, V.R.R. A loe Vera Gel and Honey-Based Edible Coatings Combined with Chemical Dip as a Safe Means for Quality Maintenance and Shelf Life Extension of Fresh-Cut Papaya. J. Food Qual. 2015, 38, 347–358. [Google Scholar] [CrossRef]
- Konagaya, K.; Al Riza, D.F.; Nie, S.; Yoneda, M.; Hirata, T.; Takahashi, N.; Kuramoto, M.; Ogawa, Y.; Suzuki, T.; Kondo, N. Monitoring mature tomato (red stage) quality during storage using ultraviolet-induced visible fluorescence image. Postharvest Biol. Technol. 2020, 160, 111031. [Google Scholar] [CrossRef]
- Ali, A.; Maqbool, M.; Ramachandran, S.; Alderson, P.G. Gum arabic as a novel edible coating for enhancing shelf-life and improving postharvest quality of tomato (Solanum lycopersicum L.) fruit. Postharvest Biol. Technol. 2010, 58, 42–47. [Google Scholar] [CrossRef]
- Khaliq, G.; Mohamed, M.T.M.; Ali, A.; Ding, P.; Ghazali, H.M. Effect of gum arabic coating combined with calcium chloride on physico-chemical and qualitative properties of mango (Mangifera indica L.) fruit during low temperature storage. Sci. Hortic. 2015, 190, 187–194. [Google Scholar] [CrossRef]
- Mohamed, N.T.S.; Ding, P.; Ghazali, H.M.; Kadir, J. Biochemical and cell wall ultrastructural changes in crown tissue of banana (Musa AAA ‘Berangan’) fruit as mediated by UVC irradiation against crown rot fungal infection. Postharvest Biol. Technol. 2017, 128, 144–152. [Google Scholar] [CrossRef]
- Rastegar, S.; Khankahdani, H.H.; Rahimzadeh, M. Effectiveness of alginate coating on antioxidant enzymes and biochemical changes during storage of mango fruit. J. Food Biochem. 2019, 43, e12990. [Google Scholar] [CrossRef]
- Si, X.; Chen, Q.; Bi, J.; Wu, X.; Yi, J.; Zhou, L.; Li, Z. Comparison of different drying methods on the physical properties, bioactive compounds and antioxidant activity of raspberry powders. J. Sci. Food Agric. 2016, 96, 2055–2062. [Google Scholar] [CrossRef]
- Zainal, B.; Ding, P.; Ismail, I.S.; Saari, N. 1H NMR metabolomics profiling unveils the compositional changes of hydro-cooled rockmelon (Cucumis melo L. reticulatus cv glamour) during storage related to in vitro antioxidant activity. Sci. Hortic. 2019, 246, 618–633. [Google Scholar] [CrossRef]
- Dave, P.N. Evaluation of Antioxidant Activities by use of Various Extracts from Abutilon Pannosum and Grewia Tenax in the Kachchh Region. MOJ Food Process. Technol. 2017, 5, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Pinheiro, J.C.; Alegria, C.S.M.; Abreu, M.M.M.N.; Gonçalves, E.M.; Silva, C.L.M. Evaluation of Alternative Preservation Treatments (Water Heat Treatment, Ultrasounds, Thermosonication and UV-C Radiation) to Improve Safety and Quality of Whole Tomato. Food Bioprocess Technol. 2016, 9, 924–935. [Google Scholar] [CrossRef]
- Briones-Labarca, V.; Giovagnoli-Vicuña, C.; Cañas-Sarazúa, R. Optimization of extraction yield, flavonoids and lycopene from tomato pulp by high hydrostatic pressure-assisted extraction. Food Chem. 2019, 278, 751–759. [Google Scholar] [CrossRef]
- Thaipong, K.; Boonprakob, U.; Crosby, K.; Cisneros-Zevallos, L.; Byrne, D.H. Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. J. Food Compos. Anal. 2006, 19, 669–675. [Google Scholar] [CrossRef]
- Jumnongpon, R.; Chaiseri, S.; Hongsprabhas, P.; Healy, J.; Meade, S.; Gerrard, J. Cocoa protein crosslinking using Maillard chemistry. Food Chem. 2012, 134, 375–380. [Google Scholar] [CrossRef]
- Raseetha, S.; Heenan, S.; Oey, I.; Burritt, D.; Hamid, N. A new strategy to assess the quality of broccoli (Brassica oleracea L. italica) based on enzymatic changes and volatile mass ion profile using Proton Transfer Reaction Mass Spectrometry (PTR-MS). Innov. Food Sci. Emerg. Technol. 2011, 12, 197–205. [Google Scholar] [CrossRef]
- Bonjoch, N.P.; Tamayo, P.R. Protein content quantification by Bradford method. In Handbook of Plant Ecophysiology Techniques; Springer: Berlin/Heidelberg, Germany, 2001; pp. 283–295. [Google Scholar] [CrossRef]
- Wang, F.; Deng, J.; Jiao, J.; Lu, Y.; Yang, L.; Shi, Z. The combined effects of Carboxymethyl chitosan and Cryptococcus laurentii treatment on postharvest blue mold caused by Penicillium italicum in grapefruit fruit. Sci. Hortic. 2019, 253, 35–41. [Google Scholar] [CrossRef]
- Han, C.; Zuo, J.; Wang, Q.; Xu, L.; Zhai, B.; Wang, Z.; Dong, H.; Gao, L. Effects of chitosan coating on postharvest quality and shelf life of sponge gourd (Luffa cylindrica) during storage. Sci. Hortic. 2014, 166, 1–8. [Google Scholar] [CrossRef]
- Habibi, F.; Ramezanian, A.; Rahemi, M.; Eshghi, S.; Guillén, F.; Serrano, M.; Valero, D. Postharvest treatments with γ-aminobutyric acid, methyl jasmonate, or methyl salicylate enhance chilling tolerance of blood orange fruit at prolonged cold storage. J. Sci. Food Agric. 2019, 99, 6408–6417. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, J.; Xie, J.; Deng, L.; Yao, S.; Zeng, K. Biocontrol efficacy of Pichia membranaefaciens and Kloeckera apiculata against Monilinia fructicola and their ability to induce phenylpropanoid pathway in plum fruit. Biol. Control 2019, 129, 83–91. [Google Scholar] [CrossRef]
- Kokkinakis, D.M.; Brooks, J.L. Tomato Peroxidase. Plant Physiol. 1979, 63, 93–99. [Google Scholar] [CrossRef] [Green Version]
- Ogola, H.J.O.; Kamiike, T.; Hashimoto, N.; Ashida, H.; Ishikawa, T.; Shibata, H.; Sawa, Y. Molecular Characterization of a Novel Peroxidase from the Cyanobacterium anabaena sp. Strain PCC 7120. Appl. Environ. Microbiol. 2009, 75, 7509–7518. [Google Scholar] [CrossRef] [Green Version]
- Kumari, Y.A.I.; Vengadaramana, A. Stimulation of Defense Enzymes in Tomato (Solanum lycopersicum L.) and Chilli (Capsicum annuum L.) in Response to Exogenous Application of Different Chemical Elicitors. Univ. J. Plant Sci. 2017, 5, 10–15. [Google Scholar] [CrossRef] [Green Version]
- Kumar, R.; Sharma, P.K.; Mishra, P.S. A review on the vanillin derivatives showing various biological activities. Int. J. PharmTech Res. 2012, 4, 266–279. [Google Scholar]
- Abebe, Z.; Tola, Y.B.; Mohammed, A. Effects of edible coating materials and stages of maturity at harvest on storage life and quality of tomato (Lycopersicon esculentum Mill.) fruits. Afr. J. Agric. Res. 2017, 12, 550–565. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Cai, N.; Chen, J.; Peng, X.; Wan, C. Chitosan-Based Coating Enriched with Hairy Fig (Ficus hirta Vahl.) Fruit Extract for “Newhall” Navel Orange Preservation. Coatings 2018, 8, 445. [Google Scholar] [CrossRef] [Green Version]
- Sikder, M.B.H.; Islam, M.M. Effect of Shrimp Chitosan Coating on Physico-chemical Properties and Shelf Life Extension of Banana. Int. J. Eng. Technol. Sci. 2019, 6, 41–54. [Google Scholar] [CrossRef]
- Hewajulige, I.; Sivakumar, D.; Sultanbawa, Y.; Wijeratnam, R.W.; Wijesundera, R.L.C. Effect of chitosan coating on the control of anthracnose and overall quality retention of papaya (Carica papaya L.) during storage. Int. Sympos. Papaya 2005, 740, 245–250. [Google Scholar] [CrossRef]
- Rashid, M.; Borman, B.; Islam, M.; Shirin, A. Application of alternative treatments to control postharvest fungal infection and shelf life extension of papaya in different maturity stages. Progress. Agric. 2019, 30, 298–304. [Google Scholar] [CrossRef] [Green Version]
- Hossain, M.S.; Iqbal, A. Effect of shrimp chitosan coating on postharvest quality of banana (Musa sapientum L.) fruits. Int. Food Res. J. 2016, 23, 277–288. [Google Scholar]
- Upadhyaya, S.; Khatiwora, E.; Bora, D.K. Estimation of total Phenol and flavonoid contents of Citrus limon L Burmf leaves from North Eastern region of India. J. Drug Deliv. Ther. 2019, 9, 40–42. [Google Scholar] [CrossRef]
- Gonçalves, S.; Moreira, E.; Andrade, P.B.; Valentão, P.; Romano, A. Effect of in vitro gastrointestinal digestion on the total phenolic contents and antioxidant activity of wild Mediterranean edible plant extracts. Eur. Food Res. Technol. 2019, 245, 753–762. [Google Scholar] [CrossRef]
- Bal, E. Influence of Chitosan-Based Coatings with UV Irradiation on Quality of Strawberry Fruit During Cold Storage. Turk. J. Agric. Food Sci. Technol. 2019, 7, 275–281. [Google Scholar] [CrossRef]
- Petriccione, M.; Mastrobuoni, F.; Pasquariello, M.S.; Zampella, L.; Nobis, E.; Capriolo, G.; Scortichini, M. Effect of Chitosan Coating on the Postharvest Quality and Antioxidant Enzyme System Response of Strawberry Fruit during Cold Storage. Foods 2015, 4, 501–523. [Google Scholar] [CrossRef] [Green Version]
- Jing, Y.; Huang, J.; Yu, X. Maintenance of the antioxidant capacity of fresh-cut pineapple by procyanidin-grafted chitosan. Postharvest Biol. Technol. 2019, 154, 79–86. [Google Scholar] [CrossRef]
- Yang, G.; Yue, J.; Gong, X.; Qian, B.; Wang, H.; Deng, Y.; Zhao, Y. Blueberry leaf extracts incorporated chitosan coatings for preserving postharvest quality of fresh blueberries. Postharvest Biol. Technol. 2014, 92, 46–53. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Floegel, A.; Kim, D.-O.; Chung, S.-J.; Koo, S.I.; Chun, O.K. Comparison of ABTS/DPPH assays to measure antioxidant capacity in popular antioxidant-rich US foods. J. Food Compos. Anal. 2011, 24, 1043–1048. [Google Scholar] [CrossRef]
- Ghasemnezhad, M.; Zareh, S.; Rassa, M.; Sajedi, R.H. Effect of chitosan coating on maintenance of aril quality, microbial population and PPO activity of pomegranate (Punica granatum L. cv. Tarom) at cold storage temperature. J. Sci. Food Agric. 2013, 93, 368–374. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.Y.; Gao, H. Effect of chitosan-based edible coating on antioxidants, antioxidant enzyme system, and postharvest fruit quality of strawberries (Fragaria x aranassa Duch.). LWT 2013, 52, 71–79. [Google Scholar] [CrossRef]
- Ali, A.; Maqbool, M.; Alderson, P.G.; Zahid, N. Effect of gum arabic as an edible coating on antioxidant capacity of tomato (Solanum lycopersicum L.) fruit during storage. Postharvest Biol. Technol. 2013, 76, 119–124. [Google Scholar] [CrossRef]
- Martínez, K.; Ortiz, M.; Albis, A.; Castañeda, C.G.G.; Valencia, M.E.; Tovar, C.D.G. The Effect of Edible Chitosan Coatings Incorporated with Thymus capitatus Essential Oil on the Shelf-Life of Strawberry (Fragaria x ananassa) during Cold Storage. Biomolecules 2018, 8, 155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, Y.; Wang, Y.; Bi, J.-L.; Yang, X.-Q.; Huang, Y.; Zhao, X.; Hu, Y.; Cai, Q.-N. Constitutive and Induced Activities of Defense-Related Enzymes in Aphid-Resistant and Aphid-Susceptible Cultivars of Wheat. J. Chem. Ecol. 2009, 35, 176–182. [Google Scholar] [CrossRef]
- Aghdam, M.S.; Asghari, M.; Farmani, B.; Mohayeji, M.; Moradbeygi, H. Impact of postharvest brassinosteroids treatment on PAL activity in tomato fruit in response to chilling stress. Sci. Hortic. 2012, 144, 116–120. [Google Scholar] [CrossRef]
- Zhan, L.; Hu, J.; Zhu, Z. Shelf life extension of minimally processed water caltrop (Trapa acornis Nakano) fruits coated with chitosan. Int. J. Food Sci. Technol. 2011, 46, 2634–2640. [Google Scholar] [CrossRef]
- Kou, X.-H.; Guo, W.-L.; Guo, R.-Z.; Li, X.-Y.; Xue, Z.-H. Effects of Chitosan, Calcium Chloride, and Pullulan Coating Treatments on Antioxidant Activity in Pear cv. “Huang guan” During Storage. Food Bioprocess Technol. 2014, 7, 671–681. [Google Scholar] [CrossRef]
- Lu, L.; Ji, L.; Shi, R.; Li, S.; Zhang, X.; Guo, Q.; Wang, C.; Qiao, L. Dextran as an elicitor of phenylpropanoid and flavonoid biosynthesis in tomato fruit against gray mold infection. Carbohydr. Polym. 2019, 225, 115236. [Google Scholar] [CrossRef] [PubMed]
- Prasannath, K. Plant defense-related enzymes against pathogens: A review. J. Agric. Sci. 2017, 11, 38. [Google Scholar] [CrossRef]
- Minh, N.P.; Nhi, T.T.Y.; Vien, L.T.B.; Ha, T.T.T.; Yen, N.T.K. Effect of Arabic Gum Coating on Postharvest Quality of Litchi (Litchi chinensis) Fruits. J. Pharma Sci. Res. 2019, 11, 1464–1468. [Google Scholar]
- Eissa, H.A. Effect of chitosan coating on shelf life and quality of fresh-cut mushroom. J. Food Qual. 2007, 30, 623–645. [Google Scholar] [CrossRef]
- Badawy, M.E.; Rabea, E.I. Potential of the biopolymer chitosan with different molecular weights to control postharvest gray mold of tomato fruit. Postharvest Biol. Technol. 2009, 51, 110–117. [Google Scholar] [CrossRef]
- Kuvalekar, A.; Redkar, A.; Gandhe, K.; Harsulkar, A. Peroxidase and polyphenol oxidase activities in compatible host–pathogen interaction in Jasminum officinaleand Uromyces hobsoni: Insights into susceptibility of host. N. Z. J. Bot. 2011, 49, 351–359. [Google Scholar] [CrossRef]
- Els, A.I.; Moha, A.H.; Ode, D.C.; Go, A.M. Biochemical Effects of Chitosan Coating and Hot Water Dipping on Green Bean Decay During Cold Storage. J. Appl. Sci. 2019, 19, 101–108. [Google Scholar] [CrossRef] [Green Version]
- Adiletta, G.; Zampella, L.; Coletta, C.; Petriccione, M. Chitosan Coating to Preserve the Qualitative Traits and Improve Antioxidant System in Fresh Figs (Ficus carica L.). Agriculture 2019, 9, 84. [Google Scholar] [CrossRef] [Green Version]
- Pasquariello, M.S.; Di Patre, D.; Mastrobuoni, F.; Zampella, L.; Scortichini, M.; Petriccione, M. Influence of postharvest chitosan treatment on enzymatic browning and antioxidant enzyme activity in sweet cherry fruit. Postharvest Biol. Technol. 2015, 109, 45–56. [Google Scholar] [CrossRef]
Diseases Score | Description | Inference |
---|---|---|
0 | No visible symptoms on fruit | No infection |
1 | 1–25% of the area covered by slight necrotic inoculations | Mild infection |
2 | 26–50% of the inoculated area covered by necrotic and white fungal mycelia | Moderate infection |
3 | 51–75% of the sample is necrotic with the presence of spore mass | Severe infection |
4 | >76% Necrotic tissue with fungal mass; appears soft and decayed | Very severe/Devastating |
Factor | Disease Incidence (%) | Disease Severity (%) |
---|---|---|
Treatment | - | - |
Negative control | 37.50 ab z | 40.83 ab |
Positive control | 44.44 a | 50.83 a |
0.5% chitosan + 10 mM vanillin | 38.19 ab | 38.33 b |
1% chitosan + 10 mM vanillin | 31.25 b | 26.66 cd |
1.5% chitosan + 10 mM vanillin | 32.63 b | 22.50 d |
0.5% chitosan + 15 mM vanillin | 31.25 b | 34.16 bc |
1.0% chitosan + 15 mM vanillin | 9.02 c | 11.66 e |
1.5% chitosan + 15 mM vanillin | 6.94 c | 9.16 e |
Storage day | - | - |
0 | 0.00 e | 0.00 e |
3 | 0.00 e | 0.00 e |
6 | 14.06 d | 16.87 d |
9 | 31.16 c | 36.25 c |
12 | 54.68 b | 51.25 b |
15 | 75.52 a | 71.25 a |
Interaction Treatment × Storage day | ** | ** |
Disease Incidence | Disease Severity | |
---|---|---|
Disease incidence | - | - |
Disease severity | 0.94 ** | - |
Factor | Total Phenolic Content (mg GAE/100 g FW) | FRAP (mM TE/g FW) | ABTS (% Inhibition) |
---|---|---|---|
Treatment | - | - | - |
Negative control | 48.08 a z | 1615.98 a | 37.99 a |
Positive control | 51.61 a | 1562.32 a | 40.22 a |
0.5% chitosan + 10 mM vanillin | 48.31 a | 1639.26 a | 36.32 ab |
1% chitosan + 10 mM vanillin | 47.98 a | 1655.78 a | 36.81 ab |
1.5% chitosan + 10 mM vanillin | 43.86 b | 1418.87 b | 34.23 b |
0.5% chitosan + 15 mM vanillin | 46.38 ab | 1567.28 a | 36.69 ab |
1.0% chitosan + 15 mM vanillin | 36.64 c | 1315.24 c | 29.82 c |
1.5% chitosan + 15 mM vanillin | 34.88 c | 1287.16 c | 28.60 c |
Storage day | - | - | - |
0 | 33.65 c | 1703.27 b | 31.89 b |
3 | 34.11 bc | 1625.36 b | 29.14 c |
6 | 42.11 b | 1668.51 b | 33.15 ab |
9 | 44.51 a | 1256.06 c | 34.76 ab |
12 | 43.57 a | 1002.46 d | 37.48 a |
15 | 47.88 a | 1994.8 a | 39.80 a |
Interaction Treatment × Storage day | ** | ** | * |
TPC | ABTS | FRAP | |
---|---|---|---|
TPC | - | - | - |
ABTS | 0.53 ** | - | - |
FRAP | 0.76 ** | 0.62 ** | - |
Factor | PAL Specific Activity (U/mg protein) | PPO Specific Activity (U/mg protein) | POD Specific Activity (U/mg protein) |
---|---|---|---|
Treatment | - | - | - |
Negative control | 0.48 ab z | 0.64 b | 1.04 ab |
Positive control | 0.53 a | 0.78 a | 1.10 a |
0.5% chitosan + 10 mM vanillin | 0.46 ab | 0.66 ab | 1.06 ab |
1% chitosan + 10 mM vanillin | 0.43 b | 0.58 c | 1.01 ab |
1.5% chitosan + 10 mM vanillin | 0.39 c | 0.64 b | 1.04 ab |
0.5% chitosan + 15 mM vanillin | 0.46 ab | 0.58 c | 0.96 bc |
1.0% chitosan + 15 mM vanillin | 0.35 d | 0.52 d | 0.86 c |
1.5% chitosan + 15 mM vanillin | 0.34 d | 0.54 d | 0.91 c |
Storage day | - | - | - |
0 | 0.45 ab | 0.49 d | 0.74 d |
3 | 0.46 ab | 0.55 c | 1.05 b |
6 | 0.42 b | 0.52 cd | 0.87 c |
9 | 0.45 ab | 0.73 b | 0.93 bc |
12 | 0.48 a | 0.72 b | 1.24 a |
15 | 0.58 a | 0.84 a | 1.57 a |
Interaction Treatment × Storage day | ** | ** | ** |
PAL | PPO | POD | |
---|---|---|---|
PAL | - | - | - |
PPO | 0.82 ** | - | - |
POD | 0.74 ** | 0.67 ** | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Safari, Z.S.; Ding, P.; Nakasha, J.J.; Yusoff, S.F. Controlling Fusarium oxysporum Tomato Fruit Rot under Tropical Condition Using Both Chitosan and Vanillin. Coatings 2021, 11, 367. https://doi.org/10.3390/coatings11030367
Safari ZS, Ding P, Nakasha JJ, Yusoff SF. Controlling Fusarium oxysporum Tomato Fruit Rot under Tropical Condition Using Both Chitosan and Vanillin. Coatings. 2021; 11(3):367. https://doi.org/10.3390/coatings11030367
Chicago/Turabian StyleSafari, Zahir Shah, Phebe Ding, Jaafar Juju Nakasha, and Siti Fairuz Yusoff. 2021. "Controlling Fusarium oxysporum Tomato Fruit Rot under Tropical Condition Using Both Chitosan and Vanillin" Coatings 11, no. 3: 367. https://doi.org/10.3390/coatings11030367
APA StyleSafari, Z. S., Ding, P., Nakasha, J. J., & Yusoff, S. F. (2021). Controlling Fusarium oxysporum Tomato Fruit Rot under Tropical Condition Using Both Chitosan and Vanillin. Coatings, 11(3), 367. https://doi.org/10.3390/coatings11030367