Double-Encapsulated Microcapsules for the Adsorption to Cotton Fabrics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Sample Preparation
2.3. Pretreatment of Cotton Fabrics
2.4. Preparation of Functional Cotton Fabrics
2.5. Characterization
2.5.1. Dynamic Light Scattering (DLS) Measurements
2.5.2. Transmission Electron Microscopy (TEM) Observations
2.5.3. Fourier Transform Infrared Spectroscopy (FT-IR) Observations
2.5.4. Confocal Laser Scanning Microscope (CLSM) Observations
2.5.5. Scanning Electron Microscopy (SEM) Observations
2.5.6. Determination of the Loading Capacity
2.5.7. Thermo-Gravimetric (TG) Analyses
2.5.8. X-ray Photoelectron Spectroscopy (XPS)
2.5.9. Statistical Analysis
2.6. Adsorption and Kinetics Study
2.7. Tests for Color Fastness to Rubbing
2.8. Tests for Accelerated Laundering
3. Results and Discussion
3.1. Characterization of DEMs
3.2. Adsorption of DEMs on Cotton Fabrics
3.3. Characterization of Adsorption Kinetics
3.4. Tests for Color Fastness
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shahid, M.; Mohammad, F. Recent advancements in natural dye applications: A review. J. Clean. Prod. 2013, 53, 310–331. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, W.; Chen, Y.; Zhang, S.; Wang, W. The Aromatic Properties of Polyurea-Encapsulated Lavender Oil Microcapsule and Their Application in Cotton Fabrics. J. Nanosci. Nanotechnol. 2019, 19, 4147–4153. [Google Scholar] [CrossRef] [PubMed]
- Bagheri-Nesami, M.; Espahbodi, F.; Nikkhah, A.; Shorofi, S.A.; Charati, J.Y. The effects of lavender aromatherapy on pain following needle insertion into a fistula in hemodialysis patients. Complementary Ther. Clin. Pract. 2014, 20, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Ashrastaghi, O.; Ayasi, M.; Gorji, M.; Habibi, V.; Charati, J.; Ebrahimzadeh, M. The effectiveness of lavender essence on sternotomy related pain intensity after coronary artery bypass grafting. Adv. Biomed. Res. 2015, 4, 127. [Google Scholar] [CrossRef] [PubMed]
- Davidov-Pardo, G.; Roccia, P.; Salgado, D.; Leon, A.E.; Pedroza-Islas, R. Utilization of Different Wall Materials to Microencapsulate Fish Oil Evaluation of its Behavior in Bread Products. Am. J. Food Technol. 2008, 3, 384–393. [Google Scholar] [CrossRef] [Green Version]
- Davidov-Pardo, G.; Arozarena, I.; Marín-Arroyo, M.R. Optimization of a Wall Material Formulation to Microencapsulate a Grape Seed Extract Using a Mixture Design of Experiments. Food Bioprocess Technol. 2013, 6, 941–951. [Google Scholar] [CrossRef]
- Gui-Xiang, H. Review of the microcapsule technology in the application of dyeing and finishing processes. Text. Dye. Finish. J. 2016, 17–70. [Google Scholar] [CrossRef]
- Li-Mei, Z.; Run-Ze, L.; Bing, L.; Zhu, T. The Progress of Micro-encapsulation Technology Applied in Dyeing and Finishing Industry. Guangzhou Chem. Ind. 2007, 35, 6–13. [Google Scholar]
- Arfat, Y.A.; Ahmed, J.; Ejaz, M.; Mullah, M. Polylactide/graphene oxide nanosheets/clove essential oil composite films for potential food packaging applications. Int. J. Biol. Macromol. 2017, 107, 194–203. [Google Scholar] [CrossRef]
- Sauraj, B.; Kumar, Y.S. Chitosan film incorporated with citric acid and glycerol as an active packaging material for extension of green chilli shelf life. Carbohydr. Polym. 2018, 195, 329–338. [Google Scholar]
- Varona, S.; Rodríguez Rojo, S.; Martín, Á.; Cocero, M.J.; Serra, A.T.; Crespo, T.; Duarte, C.M.M. Antimicrobial activity of lavandin essential oil formulations against three pathogenic food-borne bacteria. Ind. Crop. Prod. 2013, 42, 243–250. [Google Scholar] [CrossRef]
- Fetzner, A.; Böhm, S.; Schreder, S.; Schubert, R. Degradation of raw or film-incorporated β-cyclodextrin by enzymes and colonic bacteria. Eur. J. Pharm. Biopharm. Off. J. Arb. Für Pharm. Verfahr. EV 2004, 58, 91–97. [Google Scholar] [CrossRef]
- Miranda, J.C.D.; Martins, T.E.A.; Veiga, F.; Ferraz, H.G. Cyclodextrins and ternary complexes: Technology to improve solubility of poorly soluble drugs. Braz. J. Pharm. Sci. 2011, 47, 665–681. [Google Scholar] [CrossRef] [Green Version]
- Liu, K.; Ma, C.; Wu, T.; Qi, W.; Yan, Y.; Huang, J. Recent advances in assemblies of cyclodextrins and amphiphiles: Construction and regulation. Curr. Opin. Colloid Interface Sci. 2020, 45, 44–56. [Google Scholar] [CrossRef]
- Zhou, C.C.; Cheng, X.H.; Yan, Y.; Wang, J.D.; Huang, J.B. Reversible Transition between SDS@2 beta-CD Microtubes and Vesicles Triggered by Temperature. Langmuir 2014, 30, 3381–3386. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.; Jiang, L.; Huang, J. Unveil the potential function of CD in surfactant systems. Phys. Chem. Chem. Phys. 2011, 13, 9074–9082. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.; Peng, Y.; Yan, Y.; Huang, J. Aqueous self-assembly of SDS@2β-CD complexes: Lamellae and vesicles. Soft Matter. 2011, 7, 1726–1731. [Google Scholar] [CrossRef]
- Jiang, L.; Peng, Y.; Yan, Y.; Deng, M.; Wang, Y.; Huang, J. “Annular Ring” microtubes formed by SDS@2β-CD complexes in aqueous solution. Soft Matter. 2010, 6, 1731–1736. [Google Scholar] [CrossRef]
- Jiang, L.; Yan, Y.; Huang, J. Zwitterionic surfactant/cyclodextrin hydrogel: Microtubes and multiple responses. Soft Matter. 2011, 7, 10417–10423. [Google Scholar] [CrossRef]
- Zhou, C.; Cheng, X.; Zhao, Q.; Yan, Y.; Wang, J.; Huang, J. Self-Assembly of Nonionic Surfactant Tween 20@2β-CD Inclusion Complexes in Dilute Solution. Langmuir 2013, 29, 13175–13182. [Google Scholar] [CrossRef]
- Zhu, B.; Jia, L.; Guo, X.; Yin, J.; Zhao, Z.; Chen, N.; Chen, S.; Jia, Y. Controllable assembly of a novel cationic gemini surfactant containing a naphthalene and amide spacer with β-cyclodextrin. Soft Matter. 2019, 15, 3198–3207. [Google Scholar] [CrossRef]
- Guerrero-Martínez, A.; González-Gaitano, G.; Viñas, M.H.; Tardajos, G. Inclusion Complexes between β-Cyclodextrin and a Gemini Surfactant in Aqueous Solution: An NMR Study. J. Phys. Chem. B 2006, 110, 13819–13828. [Google Scholar] [CrossRef]
- Jiang, L.; Deng, M.; Wang, Y.; Liang, D.; Yan, Y.; Huang, J. Special Effect of β-Cyclodextrin on the Aggregation Behavior of Mixed Cationic/Anionic Surfactant Systems. J. Phys. Chem. B 2009, 113, 7498–7504. [Google Scholar] [CrossRef]
- Dai, C.; Yang, Z.; Yang, H.; Liu, Y.; Fang, J.; Chen, W.; Li, W.; Zhao, M. Micelle-to-vesicle transition induced by β-cyclodextrin in mixed catanionic surfactant solutions. Colloids Surf. A Physicochem. Eng. Asp. 2016, 498, 1–6. [Google Scholar] [CrossRef]
- Milcovich, G.; Antunes, F.E.; Grassi, M.; Asaro, F. Stabilization of unilamellar catanionic vesicles induced by β-cyclodextrins: A strategy for a tunable drug delivery depot. Int. J. Pharm. 2018, 548, 474–479. [Google Scholar] [CrossRef]
- Zacheo, A.; Bizzarro, L.; Blasi, L.; Piccirillo, C.; Cardone, A.; Gigli, G.; Ragusa, A.; Quarta, A. Lipid-Based Nanovesicles for Simultaneous Intracellular Delivery of Hydrophobic, Hydrophilic, and Amphiphilic Species. Front. Bioeng. Biotechnol. 2020, 8. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.; Zhang, Q.; Yan, Y.; Gong, M.; Zhao, Q.; Bao, Z.; Liu, K.; Wang, S. Designed construction of tween 60@2β-CD self-assembly vesicles as drug delivery carrier for cancer chemotherapy. Drug Deliv. 2018, 25, 623–631. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, H.; Li, X.; Jia, Q. Design of pH-Responsive Polymer Monolith Based on Cyclodextrin Vesicle for Capture and Release of Myoglobin. Acs Appl. Mater. Interfaces 2018, 10, 5909–5917. [Google Scholar] [CrossRef]
- Ma, J.; Xu, W.; Kou, X.; Niu, Y.; Xia, Y.; Wang, Y.; Tian, G.; Zhao, Y.; Ke, Q. Green Fabrication of Control-Released, Washable, and Nonadhesives Aromatic-Nanocapsules/Cotton Fabrics via Electrostatic-Adsorption/In Situ Immobilization. ACS Sustain. Chem. Eng. 2020, 8, 15258–15267. [Google Scholar] [CrossRef]
- Rajendran, R.; Radhai, R.; Kotresh, T.M.; Csiszar, E. Development of antimicrobial cotton fabrics using herb loaded nanoparticles. Carbohydr. Polym. 2013, 91, 613–617. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Liang, B.; Wang, Y.; Li, Y.; Shi, G. Core–shell nanocapsules containing essential oil for textile application. J. Appl. Polym. Sci. 2018, 135, 45695. [Google Scholar] [CrossRef]
- Hansson, S.; Tischer, T.; Goldmann, A.S.; Carlmark, A.; Barner-Kowollik, C.; Malmström, E. Visualization of poly (methyl methacrylate) (PMMA) grafts on cellulose via high-resolution FT-IR microscopy imaging. Polym. Chem. 2012, 3, 307–309. [Google Scholar] [CrossRef]
- Ma, L.; Zhao, D.; Zheng, J. Construction of electrostatic and π–π interaction to enhance interfacial adhesion between carbon nanoparticles and polymer matrix. J. Appl. Polym. Sci. 2020, 137, 48633. [Google Scholar] [CrossRef]
- Xiao, Z.; Jia, J.; Niu, Y.; Zhu, G.; Kou, X. The adsorption mechanism of poly-methyl methacrylate microparticles onto paper cellulose fiber surfaces without crosslinking agents. J. Appl. Polym. Sci. 2020, 137, 49269. [Google Scholar] [CrossRef]
- Rungwasantisuk, A.; Raibhu, S. Application of encapsulating lavender essential oil in gelatin/gum-arabic complex coacervate and varnish screen-printing in making fragrant gift-wrapping paper. Prog. Org. Coat. 2020, 149, 105924. [Google Scholar] [CrossRef]
- Siva, S.; Li, C.; Cui, H.; Meenatchi, V.; Lin, L. Encapsulation of essential oil components with methyl-β-cyclodextrin using ultrasonication: Solubility, characterization, DPPH and antibacterial assay. Ultrason. Sonochem. 2020, 64, 104997. [Google Scholar] [CrossRef]
- Fizer, M.M.; Mariychuk, R.T.; Fizer, O.I. Gold nanoparticles green synthesis with clove oil: Spectroscopic and theoretical study. Appl. Nanosci. 2021, 1–10. [Google Scholar] [CrossRef]
- Ju, Z.; Sun, J.; Liu, Y. Molecular Structures and Spectral Properties of Natural Indigo and Indirubin: Experimental and DFT Studies. Molecules 2019, 24, 3831. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiao, Z.; Liu, W.; Zhu, G.; Zhou, R.; Niu, Y. Production and characterization of multinuclear microcapsules encapsulating lavender oil by complex coacervation. Flavour Fragr. J. 2014, 29, 166–172. [Google Scholar] [CrossRef]
- Baran, A.; Fiedler, A.; Schulz, H.; Baranska, M. In situ Raman and IR spectroscopic analysis of indigo dye. Anal. Methods 2010, 2, 1372–1376. [Google Scholar] [CrossRef]
- Platania, E.; Lofrumento, C.; Lottini, E.; Azzaro, E.; Ricci, M.; Becucci, M. Tailored micro-extraction method for Raman/SERS detection of indigoids in ancient textiles. Anal. Bioanal. Chem. 2015, 407, 6505–6514. [Google Scholar] [CrossRef]
- Wang, M.; She, Y.; Xiao, Z.; Hu, J.; Zhou, R.; Zhang, J. The green adsorption of chitosan tripolyphosphate nanoparticles on cotton fiber surfaces. Carbohydr. Polym. 2014, 101, 812–818. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Z.; Hou, W.; Kang, Y.; Niu, Y.; Kou, X. Encapsulation and sustained release properties of watermelon flavor and its characteristic aroma compounds from γ-cyclodextrin inclusion complexes. Food Hydrocoll. 2019, 97, 105202. [Google Scholar] [CrossRef]
- Yang, Z.; Yao, X.; Xiao, Z.; Chen, H.; Ji, H. Preparation and release behaviour of the inclusion complexes of phenylethanol with β-cyclodextrin. Flavour Fragr. J. 2016, 31, 206–216. [Google Scholar] [CrossRef]
- Xiao, Z.; Kang, Y.; Hou, W.; Niu, Y.; Kou, X. Microcapsules based on octenyl succinic anhydride (OSA)-modified starch and maltodextrins changing the composition and release property of rose essential oil. Int. J. Biol. Macromol. 2019, 137, 132–138. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Z.; Xu, J.; Niu, Y.; Zhu, G.; Kou, X. Effects of Surface Functional Groups on the Adhesion of SiO2 Nanospheres to Bio-Based Materials. Nanomaterials 2019, 9, 1411. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ding, L.; Deng, H.; Wu, C.; Han, X. Affecting factors, equilibrium, kinetics and thermodynamics of bromide removal from aqueous solutions by MIEX resin. Chem. Eng. J. 2012, 181–182, 360–370. [Google Scholar] [CrossRef]
- Liu, Y.; Ying, D.; Sanguansri, L.; Augustin, M.A. Comparison of the adsorption behaviour of catechin onto cellulose and pectin. Food Chem. 2019, 271, 733–738. [Google Scholar] [CrossRef]
- Pignatello, J.J.; Xing, B. Mechanisms of Slow Sorption of Organic Chemicals to Natural Particles. Environ. Sci. Technol. 1996, 30, 1–11. [Google Scholar] [CrossRef]
- Hatton, F.L.; Malmström, E.; Carlmark, A. Tailor-made copolymers for the adsorption to cellulosic surfaces. Eur. Polym. J. 2015, 65, 325–339. [Google Scholar] [CrossRef]
- Wang, M.; Fu, H.; She, Y.; Xiao, Z.; Zhu, G.; Hu, J. Adsorption capacity, kinetics, and thermodynamics of chitosan nanoparticles onto cotton fabrics without any chemical binders. Polym. Compos. 2015, 36, 2093–2102. [Google Scholar] [CrossRef]
- Gopakumar, D.A.; Pasquini, D.; Henrique, M.A.; de Morais, L.C.; Grohens, Y.; Thomas, S. Meldrum’s Acid Modified Cellulose Nanofiber-Based Polyvinylidene Fluoride Microfiltration Membrane for Dye Water Treatment and Nanoparticle Removal. ACS Sustain. Chem. Eng. 2017, 5, 2026–2033. [Google Scholar] [CrossRef]
- Zambrano-Intriago, L.A.; Gorozabel-Mendoza, M.L.; Córdova Mosquera, A.; Delgado-Demera, M.H.; Duarte, M.M.M.B.; Rodríguez-Díaz, J.M. Kinetics, equilibrium, and thermodynamics of the blue 19 dye adsorption process using residual biomass attained from rice cultivation. Biomass Convers. Biorefin. 2020, 11–13. [Google Scholar] [CrossRef]
- Grabi, H.; Lemlikchi, W.; Derridj, F.; Lemlikchi, S.; Trari, M. Efficient native biosorbent derived from agricultural waste precursor for anionic dye adsorption in synthetic wastewater. Biomass Convers. Biorefin. 2021, 1–18. [Google Scholar] [CrossRef]
- Taleb, K.; Markovski, J.; Veličković, Z.; Rusmirović, J.; Rančić, M.; Pavlović, V.; Marinković, A. Arsenic removal by magnetite-loaded amino modified nano/microcellulose adsorbents: Effect of functionalization and media size. Arab. J. Chem. 2019, 12, 4675–4693. [Google Scholar] [CrossRef] [Green Version]
- Naseri, K.; Allahverdi, A. Methylene blue adsorption by TiO2-based nano-adsorbents: Performance evaluation and kinetic study. Res. Chem. Intermed. 2019, 45, 4863–4883. [Google Scholar] [CrossRef]
- Wang, H.; Xie, R.; Zhang, J.; Zhao, J. Preparation and characterization of distillers’ grain based activated carbon as low cost methylene blue adsorbent: Mass transfer and equilibrium modeling. Adv. Powder Technol. 2018, 29, 27–35. [Google Scholar] [CrossRef]
- Prajapati, A.K.; Mondal, M.K. Comprehensive kinetic and mass transfer modeling for methylene blue dye adsorption onto CuO nanoparticles loaded on nanoporous activated carbon prepared from waste coconut shell. J. Mol. Liq. 2020, 307, 112949. [Google Scholar] [CrossRef]
Samples | Relative Peak Areas (%) | Ratios | ||
---|---|---|---|---|
C1 | C2 | C3 | C2/(C1 + C3) | |
cotton fabrics | 38.58 | 25.94 | 35.49 | 0.3502 |
DEMs-cotton fabrics | 55.35 | 30.63 | 14.02 | 0.4415 |
Pseudo-first-order | ||||
K1 (min−1) | Qe, cal(mg g−1) | R2 | RE (%) | |
0.080 | 112.5 | 0.764 | 3.5 | |
Pseudo-second-order | ||||
K2(g mg−1 min−1) | Qe, cal(mg g−1) | R2 | RE (%) | |
0.001 | 119.7 | 0.884 | 2.7 | |
Bangham | ||||
Kb (min−1) | Qe, cal(mg g−1) | R2 | RE (%) | |
0.251 | 117.7 | 0.920 | 0.9 | |
Intraparticle Diffusion | ||||
Ki (mg g−1 min−0.5) | C | R2 | RE (%) | |
StageⅠ | 8.329 | 44.3 | 0.983 | - |
StageⅡ | 7.852 | 57.1 | 0.919 | - |
StageⅢ | 0.153 | 113.0 | 0.993 | - |
Serial Number | Test Methods | Color Fastness Level |
---|---|---|
1# | Rubbing | 4–5 |
2# | Accelerated laundering | 2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, Z.; Xu, W.; Ma, J.; Zhao, Y.; Niu, Y.; Kou, X.; Ke, Q. Double-Encapsulated Microcapsules for the Adsorption to Cotton Fabrics. Coatings 2021, 11, 426. https://doi.org/10.3390/coatings11040426
Xiao Z, Xu W, Ma J, Zhao Y, Niu Y, Kou X, Ke Q. Double-Encapsulated Microcapsules for the Adsorption to Cotton Fabrics. Coatings. 2021; 11(4):426. https://doi.org/10.3390/coatings11040426
Chicago/Turabian StyleXiao, Zuobing, Wenwen Xu, Jiajia Ma, Yi Zhao, Yunwei Niu, Xingran Kou, and Qinfei Ke. 2021. "Double-Encapsulated Microcapsules for the Adsorption to Cotton Fabrics" Coatings 11, no. 4: 426. https://doi.org/10.3390/coatings11040426
APA StyleXiao, Z., Xu, W., Ma, J., Zhao, Y., Niu, Y., Kou, X., & Ke, Q. (2021). Double-Encapsulated Microcapsules for the Adsorption to Cotton Fabrics. Coatings, 11(4), 426. https://doi.org/10.3390/coatings11040426