Effect of Chitosan/Nano-TiO2 Composite Coating on the Postharvest Quality of Blueberry Fruit
Abstract
:1. Introduction
2. Materials and methods
2.1. Materials
2.2. Coating Preparation and Sample Treatment
2.3. Measurement of Firmness, TSS, TA, and Ascorbic Acid Content
2.4. PPO and POD Activity
2.5. MDA Content
2.6. Measurement of the Anthocyanins, Flavonoids, and Total Phenolics Content
2.7. Measurement of the Aerobic Mesophilic Bacteria
2.8. Statistical Analysis
3. Results and Discussion
3.1. Firmness, TSS, TA, and Ascorbic Acid
3.2. PPO Activity and POD Activity
3.3. MDA Content
3.4. Measurement of the Anthocyanins, Flavonoids, and Total Phenolic Content in the Blueberries
3.5. The Aerobic Mesophilic Bacteria
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ozcelik, E.; Uslu, S.; Burukoglu, D.; Musmul, A. Chitosan and Blueberry Treatment Induces Arginase Activity and Inhibits Nitric Oxide Production During Acetaminophen-Induced Hepatotoxicity. Pharmacogn. Mag. 2014, 10, 217–224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Evans, A.A. Ultrasound-Assisted Washing of Selected Microorganisms and Pesticide Residues on the Surface of Fresh-Cut Chinese Cabbage (Brassica Rapa Var. Chinensis L.). Ph.D. Thesis, Jiangsu University, Zhenjiang, China, 2019. [Google Scholar] [CrossRef]
- Shiekh, R.A.; Malik, M.A.; Al-Thabaiti, S.A.; Shiekh, M.A. Chitosan As a Novel Edible Coating for Fresh Fruits. Food Sci. Technol. Res. 2013, 19, 139–155. [Google Scholar] [CrossRef] [Green Version]
- Jing, J.-Y.; Zhang, H.-Y.; Xue, Y.-B.; Zeng, K.-F. Effects of INA on Postharvest Blue and Green Molds and Anthracnose Decay in Citrus Fruit. J. Integr. Agric. 2020, 19, 1396–1406. [Google Scholar] [CrossRef]
- Mahunu, G.K. Effect of Bamboo Leaf Flavonoid and Phytic Acid on the Control Efficacy of Pichia Caribbica Against Penicillium Expansum and Patulin Content in Apple Fruits. Ph.D. Thesis, Jiangsu University, Zhenjiang, China, 2016. [Google Scholar]
- Totad, M.G.; Sharma, R.R.; Sethi, S.; Verma, M.K. Effect of Edible Coatings on ‘Misty’ Blueberry (Vaccinium corymbosum) Fruits Stored at Low Temperature. Acta Physiol. Plant. 2019, 41, 183. [Google Scholar] [CrossRef]
- Rokayya, S.; Jia, F.; Li, Y.; Nie, X.; Xu, J.; Han, R.; Yu, H.; Amanullah, S.; Almatrafi, M.M.; Helal, M. Application of Nano-Titanum Dioxide Coating on Fresh Highbush Blueberries Shelf Life Stored under Ambient Temperature. LWT 2021, 137, 110422. [Google Scholar] [CrossRef]
- Pobiega, K.; Igielska, M.; Włodarczyk, P.; Gniewosz, M. The Use of Pullulan Coatings With Propolis Extract to Extend the Shelf Life of Blueberry (Vaccinium corymbosum) Fruit. Int. J. Food Sci. Technol. 2021, 56, 1013–1020. [Google Scholar] [CrossRef]
- Pasquariello, M.S.; di Patre, D.; Mastrobuoni, F.; Zampella, L.; Scortichini, M.; Petriccione, M. Influence of postharvest chitosan treatment on enzymatic browning and antioxidant enzyme activity in sweet cherry fruit. Postharvest Biol. Technol. 2015, 109, 45–56. [Google Scholar] [CrossRef]
- Shanmugam, B.K.; Rangaraj, S.; Subramani, K.; Srinivasan, S.; Aicher, W.K.; Venkatachalam, R. Biomimetic TiO2-chitosan/Sodium Alginate Blended Nanocomposite Scaffolds for Tissue Engineering Applications. Mater. Sci. Eng. C 2020, 110, 110710. [Google Scholar] [CrossRef]
- Tian, F.; Chen, W.; Wu, C.; Kou, X.; Fan, G.; Li, T.; Wu, Z. Preservation of Ginkgo Biloba Seeds by Coating With chitosan/nano-TiO2 and chitosan/Nano-SiO2 Films. Int. J. Biol. Macromol. 2019, 126, 917–925. [Google Scholar] [CrossRef]
- Yuan, Z.; Wang, M.L.; Li, X. Effects of Chitosan/TiO2 Composite Coating on Keeping-Fresh of Stauntonvine. Adv. Mater. Res. 2012, 530, 68–73. [Google Scholar] [CrossRef]
- Jayakumar, R.; Ramachandran, R.; Kumar, P.S.; Divyarani, V.; Srinivasan, S.; Chennazhi, K.; Tamura, H.; Nair, S. Fabrication of chitin–chitosan/Nano ZrO2 Composite Scaffolds for Tissue Engineering Applications. Int. J. Biol. Macromol. 2011, 49, 274–280. [Google Scholar] [CrossRef]
- Nile, S.H.; Baskar, V.; Selvaraj, D.; Nile, A.; Xiao, J.; Kai, G. Nanotechnologies in Food Science: Applications, Recent Trends, and Future Perspectives. Nano-Micro Lett. 2020, 12, 1–34. [Google Scholar] [CrossRef] [Green Version]
- Xing, Y.; Xu, Q.; Che, Z.; Li, W.; Li, X. Effects of Chitosan-Oil Coating on Blue Mold Disease and Quality Attributes of Jujube Fruits. Food Funct. 2011, 2, 466–474. [Google Scholar] [CrossRef]
- Chen, H.; Gu, Z.; An, H.; Chen, C.; Chen, J.; Cui, R.; Chen, S.; Chen, W.; Chen, X.; Chen, X.; et al. Precise Nanomedicine for Intelligent Therapy of Cancer. Sci. China Ser. B Chem. 2018, 61, 1503–1552. [Google Scholar] [CrossRef]
- Ikono, R.; Li, N.; Pratama, N.H.; Vibriani, A.; Yuniarni, D.R.; Luthfansyah, M.; Bachtiar, B.M.; Bachtiar, E.W.; Mulia, K.; Nasikin, M.; et al. Enhanced Bone Regeneration Capability of Chitosan Sponge Coated With TiO2 Nanoparticles. Biotechnol. Rep. 2019, 24, e00350. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, Y.; Xiao, G.; Su, H. Fabrication of biomaterial/TiO2 Composite Photocatalysts for the Selective Removal of Trace Environmental Pollutants. Chin. J. Chem. Eng. 2019, 27, 1416–1428. [Google Scholar] [CrossRef]
- Falagán, N.; Miclo, T.; Terry, L.A. Graduated Controlled Atmosphere: A Novel Approach to Increase “Duke” Blueberry Storage Life. Front. Plant. Sci. 2020, 11, 221. [Google Scholar] [CrossRef]
- Xing, Y.; Xu, Q.; Li, X.; Che, Z.; Yun, J. Antifungal Activities of Clove Oil Against Rhizopus Nigricans, Aspergillus Flavus and Penicillium Citrinum In Vitro and in Wounded Fruit Test. J. Food Saf. 2011, 32, 84–93. [Google Scholar] [CrossRef]
- Krishna, K.R.; Sudhakar, R.D.V. Effect of Chitosan Coating on the Physiochemical Characteristics of Guava (Psidium guajava L.) Fruits During Storage at Room Temperature. Indian J. Sci Technol. 2014, 7, 554–558. [Google Scholar] [CrossRef]
- Petriccione, M.; Mastrobuoni, F.; Pasquariello, M.S.; Zampella, L.; Nobis, E.; Capriolo, G.; Scortichini, M. Effect of Chitosan Coating on the Postharvest Quality and Antioxidant Enzyme System Response of Strawberry Fruit During Cold Storage. Foods 2015, 4, 501–523. [Google Scholar] [CrossRef] [Green Version]
- Vieira, J.M.; Flores-López, M.L.; de Rodríguez, D.J.; Sousa, M.C.; Vicente, A.A.; Martins, J.T. Effect of chitosan– Aloe Vera Coating on Postharvest Quality of Blueberry (Vaccinium corymbosum) Fruit. Postharvest Biol. Technol. 2016, 116, 88–97. [Google Scholar] [CrossRef] [Green Version]
- Badawy, M.E.; Rabea, E.I. Potential of the Biopolymer Chitosan With Different Molecular Weights to Control Postharvest Gray Mold of Tomato Fruit. Postharvest Biol. Technol. 2009, 51, 110–117. [Google Scholar] [CrossRef]
- Xing, Y.; Li, X.; Xu, Q.; Jiang, Y.; Yun, J.; Li, W. Effects of Chitosan-Based Coating and Modified Atmosphere Packaging (MAP) on Browning and Shelf Life of Fresh-Cut Lotus Root (Nelumbo Nucifera Gaerth). Innov. Food Sci. Emerg. Technol. 2010, 11, 684–689. [Google Scholar] [CrossRef]
- Zeng, K.; Cao, J.; Jiang, W. Enhancing Disease Resistance in Harvested Mango (Mangifera indica L. Cv. ‘Matisu’) Fruit by Salicylic Acid. J. Sci. Food Agric. 2006, 86, 694–698. [Google Scholar] [CrossRef]
- Xu, Q.; Xing, Y.; Che, Z.; Guan, T.; Zhang, L.; Bai, Y.; Gong, L. Effect of Chitosan Coating and Oil Fumigation on the Microbiological and Quality Safety of Fresh-Cut Pear. J. Food Saf. 2013, 33, 179–189. [Google Scholar] [CrossRef]
- Kahramanoğlu, I.; Aktaş, M.; Gündüz, Ş. Effects of Fludioxonil, Propolis and Black Seed Oil Application on the Postharvest Quality of “Wonderful” Pomegranate. PLoS ONE 2018, 13, e0198411. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bico, S.; Raposo, M.; Morais, R.; Morais, A. Combined Effects of Chemical Dip and/or Carrageenan Coating and/Or Controlled Atmosphere on Quality of Fresh-Cut Banana. Food Control 2009, 20, 508–514. [Google Scholar] [CrossRef]
- Xin, Y.; Jin, Z.; Chen, F.; Lai, S.; Yang, H. Effect of Chitosan Coatings on the Evolution of Sodium Carbonate-Soluble Pectin During Sweet Cherry Softening under Non-Isothermal Conditions. Int. J. Biol. Macromol. 2020, 154, 267–275. [Google Scholar] [CrossRef]
- Mannozzi, C.; Tylewicz, U.; Chinnici, F.; Siroli, L.; Rocculi, P.; Rosa, M.D.; Romani, S. Effects of Chitosan Based Coatings Enriched With Procyanidin by-Product on Quality of Fresh Blueberries During Storage. Food Chem. 2018, 251, 18–24. [Google Scholar] [CrossRef]
- Chiabrando, V.; Giacalone, G. Anthocyanins, Phenolics and Antioxidant Capacity After Fresh Storage of Blueberry Treated With Edible Coatings. Int. J. Food Sci. Nutr. 2015, 66, 248–253. [Google Scholar] [CrossRef]
- Sturm, K.; Koron, D.; Stampar, F. The Composition of Fruit of Different Strawberry Varieties Depending on Maturity Stage. Food Chem. 2003, 83, 417–422. [Google Scholar] [CrossRef]
- Ghasemnezhad, M.; Shiri, M.A. Effect of Chitosan Coatings on Some Quality Indices of Apricot (Prunus Armeniaca L.) During Cold Storage. Casp. J. Environ. Sci. 2010, 8, 25–33. [Google Scholar]
- Xing, Y.; Li, X.; Xu, Q.; Yun, J.; Lu, Y.; Tang, Y. Effects of Chitosan Coating Enriched With Cinnamon Oil on Qualitative Properties of Sweet Pepper (Capsicum annuum L.). Food Chem. 2011, 124, 1443–1450. [Google Scholar] [CrossRef]
- Srinivasa, P.; Baskaran, R.; Ramesh, M.; Prashanth, K.H.; Tharanathan, R. Storage Studies of Mango Packed Using Biodegradable Chitosan Film. Eur. Food Res. Technol. 2002, 215, 504–508. [Google Scholar] [CrossRef]
- Yang, G.; Yue, J.; Gong, X.; Qian, B.; Wang, H.; Deng, Y.; Zhao, Y. Blueberry Leaf Extracts Incorporated Chitosan Coatings for Preserving Postharvest Quality of Fresh Blueberries. Postharvest Biol. Technol. 2014, 92, 46–53. [Google Scholar] [CrossRef]
- Nasrin, T.A.A.; Rahman, M.A.; Hossain, M.A.; Islam, M.N.; Arfin, M.S. Postharvest Quality Response of Strawberries with Aloe Vera Coating During Refrigerated Storage. J. Hortic. Sci. Biotechnol. 2017, 92, 598–605. [Google Scholar] [CrossRef]
- Vargas, M.; Albors, A.; Chiralt, A.; González-Martínez, C. Quality of Cold-Stored Strawberries As Affected by chitosan–oleic Acid Edible Coatings. Postharvest Biol. Technol. 2006, 41, 164–171. [Google Scholar] [CrossRef]
- Benítez, S.; Soro, L.; Achaerandio, I.; Sepulcre, F.; Pujolà, M. Combined Effect of a Low Permeable Film and Edible Coatings or Calcium Dips on the Quality of Fresh-Cut Pineapple. J. Food Process. Eng. 2014, 37, 91–99. [Google Scholar] [CrossRef]
- Zhu, X.; Wang, Q.; Cao, J.; Jiang, W. Effects of Chitosan Coating on Postharvest Quality of Mango (Mangifera Indical. Cv. Tainong) Fruits. J. Food Process. Preserv. 2008, 32, 770–784. [Google Scholar] [CrossRef]
- Lustriane, C.; Dwivany, F.M.; Suendo, V.; Reza, M. Effect of Chitosan and Chitosan-Nanoparticles on Post Harvest Quality of Banana Fruits. J. Plant. Biotechnol. 2018, 45, 36–44. [Google Scholar] [CrossRef] [Green Version]
- Tokatlı, K.; Demirdöven, A. Effects of Chitosan Edible Film Coatings on the Physicochemical and Microbiological Qualities of Sweet Cherry (Prunus avium L.). Sci. Hortic. 2020, 259, 108656. [Google Scholar] [CrossRef]
- Caleb, O.J.; Wegner, G.; Rolleczek, C.; Herppich, W.B.; Geyer, M.; Mahajan, P.V. Hot Water Dipping: Impact on Postharvest Quality, Individual Sugars, and Bioactive Compounds During Storage of ‘Sonata’ Strawberry. Sci. Hortic. 2016, 210, 150–157. [Google Scholar] [CrossRef]
- Cordenunsi, B.R.; Genovese, M.I.; Nascimento, J.R.O.D.; Hassimotto, N.M.A.; dos Santos, R.J.; Lajolo, F.M. Effects of Temperature on the Chemical Composition and Antioxidant Activity of Three Strawberry Cultivars. Food Chem. 2005, 91, 113–121. [Google Scholar] [CrossRef]
- Gomes, M.H.; Beaudry, R.M.; Almeida, D.P.; Malcata, F.X. Modelling Respiration of Packaged Fresh-Cut ‘Rocha’ Pear As Affected by Oxygen Concentration and Temperature. J. Food Eng. 2010, 96, 74–79. [Google Scholar] [CrossRef]
- Kaewklin, P.; Siripatrawan, U.; Suwanagul, A.; Lee, Y.S. Active Packaging from Chitosan-Titanium Dioxide Nanocomposite Film for Prolonging Storage Life of Tomato Fruit. Int. J. Biol. Macromol. 2018, 112, 523–529. [Google Scholar] [CrossRef]
- Xiao, Z.; Luo, Y.; Luo, Y.; Wang, Q. Combined Effects of Sodium Chlorite Dip Treatment and Chitosan Coatings on the Quality of Fresh-Cut d’Anjou Pears. Postharvest Biol. Technol. 2011, 62, 319–326. [Google Scholar] [CrossRef]
- Ommol, B.S.; Mahmoud, K.S.; Aryou, E. Aloe Vera and Ascorbic Acid Coatings Maintain Postharvest Quality and Reduce Microbial Load of Strawberry Fruit. Postharvest. Biol. Technol. 2016, 114, 29–35. [Google Scholar] [CrossRef]
- Xu, W.-T.; Peng, X.-L.; Luo, Y.-B.; Wang, J.-A.; Guo, X.; Huang, K.-L. Physiological and Biochemical Responses of Grapefruit Seed Extract Dip on ‘Redglobe’ Grape. LWT 2009, 42, 471–476. [Google Scholar] [CrossRef]
- Lang, Y.; Li, B.; Gong, E.; Shu, C.; Si, X.; Gao, N.; Zhang, W.; Cui, H.; Meng, X. Effects of α-Casein and β-Casein on the Stability, Antioxidant Activity and Bioaccessibility of Blueberry Anthocyanins With an in Vitro Simulated Digestion. Food Chem. 2021, 334, 127526. [Google Scholar] [CrossRef]
- Kalt, W.; Forney, C.F.; Martin, A.; Prior, R.L. Antioxidant Capacity, Vitamin C, Phenolics, and Anthocyanins After Fresh Storage of Small Fruits. J. Agric. Food Chem. 1999, 47, 4638–4644. [Google Scholar] [CrossRef]
- Lin, Y.; Li, N.; Lin, H.; Lin, M.; Chen, Y.; Wang, H.; Ritenour, M.A.; Lin, Y. Effects of Chitosan Treatment on the Storability and Quality Properties of Longan Fruit During Storage. Food Chem. 2020, 306, 125627. [Google Scholar] [CrossRef] [PubMed]
- Kistriyani, L.; Ramadhani, A.A.; Resphaty, D.P. Encapsulation of Anthocyanin and Flavonoid from Watermelon Rind (Citrullus lanatus) As a Natural Food Preservative. Key Eng. Mater. 2019, 818, 50–55. [Google Scholar] [CrossRef]
- Sun, X.; Narciso, J.; Wang, Z.; Ference, C.; Bai, J.; Zhou, K. Effects of Chitosan-Essential Oil Coatings on Safety and Quality of Fresh Blueberries. J. Food Sci. 2014, 79, M955–M960. [Google Scholar] [CrossRef]
- Oliveira, Í.; Ribeiro, A.; Mello-Farias, P.; Malgarim, M.; Machado, M.; Lamela, C. Biodegradable Coatings on Blueberries Postharvest Conservation Refrigerated in a Modified Atmosphere. J. Exp. Agric. Int. 2018, 20, 1–11. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xing, Y.; Yang, S.; Xu, Q.; Xu, L.; Zhu, D.; Li, X.; Shui, Y.; Liu, X.; Bi, X. Effect of Chitosan/Nano-TiO2 Composite Coating on the Postharvest Quality of Blueberry Fruit. Coatings 2021, 11, 512. https://doi.org/10.3390/coatings11050512
Xing Y, Yang S, Xu Q, Xu L, Zhu D, Li X, Shui Y, Liu X, Bi X. Effect of Chitosan/Nano-TiO2 Composite Coating on the Postharvest Quality of Blueberry Fruit. Coatings. 2021; 11(5):512. https://doi.org/10.3390/coatings11050512
Chicago/Turabian StyleXing, Yage, Shuang Yang, Qinglian Xu, Lin Xu, Dan Zhu, Xuanlin Li, Yuru Shui, Xiaocui Liu, and Xiufang Bi. 2021. "Effect of Chitosan/Nano-TiO2 Composite Coating on the Postharvest Quality of Blueberry Fruit" Coatings 11, no. 5: 512. https://doi.org/10.3390/coatings11050512
APA StyleXing, Y., Yang, S., Xu, Q., Xu, L., Zhu, D., Li, X., Shui, Y., Liu, X., & Bi, X. (2021). Effect of Chitosan/Nano-TiO2 Composite Coating on the Postharvest Quality of Blueberry Fruit. Coatings, 11(5), 512. https://doi.org/10.3390/coatings11050512