Recovery of Pd(II) from Aqueous Solution by Polyethylenimine-Crosslinked Chitin Biosorbent
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of PEI-Chitin
2.3. Characterization Analysis
2.4. Batch Adsorption Studies
2.5. Batch Desorption Studies
2.6. Reuse Studies
3. Results
3.1. Characterization of Raw Chitin and PEI-Chitin
3.2. Adsorption Isotherms
3.3. Adsorption Kinetics
3.4. Desorption Studies
3.5. Reuse Studies in Fixed-Bed Column
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lee, J.C.; Kurniawan; Hong, H.J.; Chung, K.W.; Kim, S.Y. Separation of platinum, palladium and rhodium from aqueous solutions using ion exchange resin: A review. Sep. Purif. Technol. 2020, 246, 116896. [Google Scholar] [CrossRef]
- Zhang, L.G.; Song, Q.M.; Liu, Y.; Xu, Z.M. Novel approach for recovery of palladium in spent catalyst from automobile by a capture technology of eutectic copper. J. Clean. Prod. 2019, 239, 118093. [Google Scholar] [CrossRef]
- Yamada, M.; Rajiv Gandhi, M.; Shibayama, A. Rapid and selective recovery of palladium from platinum group metals and base metals using a thioamide-modified calix[4]arene extractant in environmentally friendly hydrocarbon fluids. Sci. Rep. 2018, 8, 16909. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Wang, Y.; Weng, H.Q.; Wu, Z.H.; He, K.B.; Zhang, P.; Guo, Z.F.; Lin, M.Z. Selective Separation of Pd(II) on Pyridine-Functionalized Graphene Oxide Prepared by Radiation-Induced Simultaneous Grafting Polymerization and Reduction. ACS Appl. Mater. Interfaces 2019, 11, 24560–24570. [Google Scholar] [CrossRef] [PubMed]
- Reck, B.K.; Graedel, T.E. Challenges in metal recycling. Science 2012, 337, 690–695. [Google Scholar] [CrossRef]
- Wang, Z.; Kang, S.B.; Won, S.W. Selective adsorption of palladium(II) from aqueous solution using epichlorohydrin crosslinked polyethylenimine-chitin adsorbent: Batch and column studies. J. Environ. Chem. Eng. 2021, 9, 105058. [Google Scholar] [CrossRef]
- Li, S.; Chu, N.N.; Li, X.M.; Dong, F.F.; Shen, Y.L. Recovery of palladium from acidic nitrate media with triazole type extractants in ionic liquid. Hydrometallurgy 2019, 189, 105148. [Google Scholar] [CrossRef]
- Kajiwara, T.; Morisada, S.; Ohto, K.; Kawakita, H. Palladium particle recovery from nitrile butadiene rubber dissolved in acetone through precipitation of poly(2-(dimethylamino)ethyl methacrylate). Hydrometallurgy 2018, 179, 73–78. [Google Scholar] [CrossRef]
- Zhou, C.; Ontiveros-Valencia, A.; Wang, Z.C.; Maldonado, J.; Zhao, H.P.; Krajmalnik-Brown, R.; Rittmann, B.E. Palladium Recovery in a H2-Based Membrane Biofilm Reactor: Formation of Pd(0) Nanoparticles through Enzymatic and Autocatalytic Reductions. Environ. Sci. Technol. 2016, 50, 2546–2555. [Google Scholar] [CrossRef] [PubMed]
- Dodson, J.R.; Parker, H.L.; García, A.M.; Hicken, A.; Asemave, K.; Farmer, T.J.; He, H.; Clark, J.H.; Hunt, A.J. Bio-derived materials as a green route for precious & critical metal recovery and re-use. Green Chem. 2015, 17, 1951–1965. [Google Scholar]
- Zhao, F.P.; Repo, E.; Song, Y.; Yin, D.L.; Hammouda, S.B.; Chen, L.; Kalliola, S.; Tang, J.T.; Tam, K.C.; Sillanpää, M. Polyethylenimine-cross-linked cellulose nanocrystals for highly efficient recovery of rare earth elements from water and a mechanism study. Green Chem. 2017, 19, 4816–4828. [Google Scholar] [CrossRef]
- Zhang, S.Z.; Liu, C.Z.; Yuan, Y.K.; Fan, M.H.; Zhang, D.D.; Wang, D.F.; Xu, Y. Selective, highly efficient extraction of Cr(III), Pb(II) and Fe(III) from complex water environment with a tea residue derived porous gel adsorbent. Bioresour. Technol. 2020, 311, 123520. [Google Scholar] [CrossRef]
- Golnaraghi Ghomi, A.; Asasian-Kolur, N.; Sharifian, S.; Golnaraghi, A. Biosorpion for sustainable recovery of precious metals from wastewater. J. Environ. Chem. Eng. 2020, 8, 103996. [Google Scholar] [CrossRef]
- Duan, B.; Huang, Y.; Lu, A.; Zhang, L.N. Recent advances in chitin based materials constructed via physical methods. Prog. Polym. Sci. 2018, 82, 1–33. [Google Scholar] [CrossRef]
- Côrtes, L.N.; Tanabe, E.H.; Bertuol, D.A.; Dotto, G.L. Biosorption of gold from computer microprocessor leachate solutions using chitin. Waste Manag. 2015, 45, 272–279. [Google Scholar] [CrossRef] [PubMed]
- Yamazaki, S.; Takegawa, A.; Kaneko, Y.; Kadokawa, J.I.; Yamagata, M.; Ishikawa, M. Performance of electric double-layer capacitor with acidic cellulose–chitin hybrid gel electrolyte. J. Electrochem. Soc. 2010, 157, A203–A208. [Google Scholar] [CrossRef]
- Torres, R.; Lapidus, G.T. Platinum, palladium and gold leaching from magnetite ore, with concentrated chloride solutions and ozone. Hydrometallurgy 2016, 166, 185–194. [Google Scholar] [CrossRef]
- Wang, M.M.; Tan, Q.Y.; Chiang, J.F.; Li, J.H. Recovery of rare and precious metals from urban mines—A review. Front. Environ. Sci. Eng. 2017, 11, 1–17. [Google Scholar] [CrossRef]
- Yu, D.; Kawakita, H.; Morisada, S.; Ohto, K.; Inoue, K. Precious metal ions adsorption on unmodified chitin gels. 2018, 47, 5–10. Rep. Fac. Sci. Engrg. Saga Univ. 2018, 47, 5–10. [Google Scholar]
- Kanai, Y.; Oshima, T.; Baba, Y. Synthesis of Highly Porous Chitosan Microspheres Anchored with 1,2-Ethylenedisulfide Moiety for the Recovery of Precious Metal Ions. Ind. Eng. Chem. Res. 2008, 47, 3114–3120. [Google Scholar] [CrossRef]
- Lin, S.; Wei, W.; Wu, X.H.; Zhou, T.; Mao, J.; Yun, Y.S. Selective recovery of Pd(II) from extremely acidic solution using ion-imprinted chitosan fiber: Adsorption performance and mechanisms. J. Hazard. Mater. 2015, 299, 10–17. [Google Scholar] [CrossRef] [PubMed]
- Mincke, S.; Asere, T.G.; Verheye, I.; Folens, K.; Vanden Bussche, F.; Lapeire, L.; Verbeken, K.; Van Der Voort, P.; Tessema, D.A.; Fufa, F.; et al. Functionalized chitosan adsorbents allow recovery of palladium and platinum from acidic aqueous solutions. Green Chem. 2019, 21, 2295–2306. [Google Scholar] [CrossRef]
- Said Al Hoqani, H.A.; AL-Shaqsi, N.; Hossain, M.A.; Al Sibani, M.A. Isolation and optimization of the method for industrial production of chitin and chitosan from Omani shrimp shell. Carbohydr. Res. 2020, 492, 108001. [Google Scholar] [CrossRef]
- Sogias, I.A.; Khutoryanskiy, V.V.; Williams, A.C. Exploring the factors affecting the solubility of chitosan in water. Macromol. Chem. Phys. 2010, 211, 426–433. [Google Scholar] [CrossRef]
- Cao, Y.L.; Pan, Z.H.; Shi, Q.X.; Yu, J.Y. Modification of chitin with high adsorption capacity for methylene blue removal. Int. J. Biol. Macromol. 2018, 114, 392–399. [Google Scholar] [CrossRef]
- Li, Z.C.; Dotto, G.L.; Bajahzar, A.; Sellaoui, L.; Belmabrouk, H.; Ben Lamine, A.; Bonilla-Petriciolet, A. Adsorption of indium (III) from aqueous solution on raw, ultrasound- and supercritical-modified chitin: Experimental and theoretical analysis. Chem. Eng. J. 2019, 373, 1247–1253. [Google Scholar] [CrossRef]
- Mamah, S.C.; Goh, P.S.; Ismail, A.F.; Amin, M.A.M.; Ahmad, N.A.; Suzaimi, N.D.; Raji, Y.O. Facile preparation of palygorskite/chitin nanofibers hybrids nanomaterial with remarkable adsorption capacity. Mater. Sci. Eng. B 2020, 262, 114725. [Google Scholar] [CrossRef]
- Kim, G.M.; Wang, Z.; Kang, S.B.; Won, S.W. Polyethylenimine-crosslinked chitin flake as a biosorbent for removal of Acid Blue 25. Korean J. Chem. Eng. 2019, 36, 1455–1465. [Google Scholar] [CrossRef]
- Wang, Z.; Kang, S.B.; Won, S.W. Removal of reactive black 5 from aqueous solution using polyethylenimine-crosslinked chitin: Batch and fixed-bed column studies. Chem. Eng. Trans. 2020, 78, 97–102. [Google Scholar]
- Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S.W. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069. [Google Scholar] [CrossRef] [Green Version]
- Lin, S.; Zhao, Y.F.; Bediako, J.K.; Cho, C.W.; Sarkar, A.K.; Lim, C.R.; Yun, Y.S. Structure-controlled recovery of palladium(II) from acidic aqueous solution using metal-organic frameworks of MOF-802, UiO-66 and MOF-808. Chem. Eng. J. 2019, 362, 280–286. [Google Scholar] [CrossRef]
- Hamedelniel Suliman, M.; Nahid Siddiqui, M.; Basheer, C. Surface functionalization of mesoporous carbon for the enhanced removal of strontium and cesium radionuclides. Coatings 2020, 10, 923. [Google Scholar] [CrossRef]
- Li, Q.H.; Dong, M.; Li, R.; Cui, Y.Q.; Xie, G.X.; Wang, X.X.; Long, Y.Z. Enhancement of Cr(VI) removal efficiency via adsorption/photocatalysis synergy using electrospun chitosan/g-C3N4/TiO2 nanofibers. Carbohydr. Polym. 2021, 253, 117200. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Krishna Kumar, A.S.; Rajesh, N. A perspective on diverse adsorbent materials to recover precious palladium and the way forward. RSC Adv. 2017, 7, 52133–52142. [Google Scholar] [CrossRef] [Green Version]
- Patel, H. Fixed-bed column adsorption study: A comprehensive review. Appl. Water Sci. 2019, 9, 45. [Google Scholar] [CrossRef] [Green Version]
- Sadowska, M.; Kińska, K.; Kowalska, J.; Krasnodębska-Ostręga, B. Sample pretreatment for voltammetric determination of Pd selective separation and preconcentration using Cellex-T. Microchem. J. 2020, 154, 104557. [Google Scholar] [CrossRef]
Sample | Msample | N (%) | C (%) | H (%) | S (%) |
---|---|---|---|---|---|
Raw chitin | 2.3350 | 5.45 | 42.55 | 4.36 | 0.97 |
PEI-chitin | 2.1880 | 5.95 | 42.11 | 4.51 | 0.99 |
Sample | Pore Volume (cm3/g) | BET Surface Area (m2/g) | Average Pore Size (nm) |
---|---|---|---|
Raw chitin | 0.029 | 4.24 | 39.82 |
PEI-chitin | 0.015 | 2.09 | 47.12 |
Sample | qexp (mg/g) | Langmuir Model | Freundlich Model | ||||
---|---|---|---|---|---|---|---|
qmax (mg/g) | KL (L/mg) | R2 | KF ((mg/g)(L/mg)1/n) | n | R2 | ||
Raw chitin | 2.1 | 2.8 | 0.0275 | 0.9640 | 0.31 | 2.46 | 0.9083 |
PEI-chitin | 51.5 | 57.1 | 0.0552 | 0.9541 | 11.19 | 3.29 | 0.8712 |
Pd(II) (mg/L) | qexp (mg/g) | Pseudo-First-Order Model | Pseudo-Second-Order Model | ||||
---|---|---|---|---|---|---|---|
q1 (mg/g) | k1 (L/min) | R2 | q2 (mg/g) | k2 (g/(mg·min)) | R2 | ||
50 | 29.9 | 28.0 | 0.4268 | 0.9799 | 30.5 | 0.0214 | 0.9998 |
100 | 39.2 | 37.3 | 0.9999 | 0.9702 | 39.8 | 0.0403 | 0.9960 |
200 | 55.8 | 53.2 | 0.7784 | 0.9633 | 57.0 | 0.0216 | 0.9923 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Kang, S.B.; Won, S.W. Recovery of Pd(II) from Aqueous Solution by Polyethylenimine-Crosslinked Chitin Biosorbent. Coatings 2021, 11, 593. https://doi.org/10.3390/coatings11050593
Wang Z, Kang SB, Won SW. Recovery of Pd(II) from Aqueous Solution by Polyethylenimine-Crosslinked Chitin Biosorbent. Coatings. 2021; 11(5):593. https://doi.org/10.3390/coatings11050593
Chicago/Turabian StyleWang, Zhuo, Su Bin Kang, and Sung Wook Won. 2021. "Recovery of Pd(II) from Aqueous Solution by Polyethylenimine-Crosslinked Chitin Biosorbent" Coatings 11, no. 5: 593. https://doi.org/10.3390/coatings11050593
APA StyleWang, Z., Kang, S. B., & Won, S. W. (2021). Recovery of Pd(II) from Aqueous Solution by Polyethylenimine-Crosslinked Chitin Biosorbent. Coatings, 11(5), 593. https://doi.org/10.3390/coatings11050593