Effect of Chitosan–Pullulan Composite Edible Coating Functionalized with Pomegranate Peel Extract on the Shelf Life of Mango (Mangifera indica)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Experimental Methods
2.2.1. Preparation of Pomegranate Peel Extract
2.2.2. Preparation of Chitosan–Pullulan Composite Edible Coating
2.2.3. Application of Edible Coating on Mango Fruits and their Storage Condition
2.2.4. Preparation of Extract of Mango Fruits
2.3. Physiological Responses
Physiological Loss in Weight (PLW)
2.4. Physicochemical and Textural Properties
2.4.1. Total Soluble Solids (TSS)
2.4.2. Titratable Acidity (TA)
2.4.3. PH
2.4.4. Color
2.4.5. Firmness
2.5. Phytochemical Analysis
2.5.1. Total Phenolic Content (TPC)
2.5.2. Total Flavonoid Content (TFC)
2.5.3. Radical Scavenging Activity (RSA)
2.6. Sensory Evaluation
2.7. Experimental Design and Data Analysis
3. Results and Discussion
3.1. Physiological Loss in Weight (PLW)
3.2. Total Soluble Solids (TSS)
3.3. Titratable Acidity (%)
3.4. PH
3.5. Color (L*, a*, b*)
3.6. Firmness
3.7. Total Phenolic Content (TPC)
3.8. Total Flavonoid Content (TFC)
3.9. Radical Scavenging Activity (RSA)
3.10. Sensory Characteristics
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chauhan, S.; Gupta, K.C.; Agrawal, M. Efficacy of chitosan and calcium chloride on postharvest storage period of mango with the application of hurdle technology. Int. J. Curr. Microbiol. Appl. Sci. 2014, 3, 731–740. [Google Scholar]
- Elik, A.; Yanık, D.; Istanbullu, Y.; Guzelsoy, N.; Yavuz, A.; Gögüs, F. Strategies to reduce post-harvest losses for fruits and vegetables. Int. J. Sci. Technol. Res. 2019, 5, 29–39. [Google Scholar]
- Yahaya, S.M.; Mardiyya, A.Y. Review of post-harvest losses of fruits and vegetables. Biomed. J. Sci. Tech. Res. 2019, 13, 10192–10200. [Google Scholar]
- FAO. Postharvest Management of Mango for Quality and Safety Assurance. Guidance for Horticultural Supply Chain Stakeholders; FAO: Rome, Italy, 2018; pp. 1–21. [Google Scholar]
- FAO. The State of Food and Agriculture: Climate Change, Agriculture and Food Security; FAO: Rome, Italy, 2016; Available online: www.fao.org/publications (accessed on 23 October 2016).
- Thakur, J.P.; Gothwal, P.P.; Singh, I. Postharvest treatments for extension of mango fruit var. Dashehari (Mangifera indica L.). Int. J. Food Sci. Nutr. 2017, 2, 156–162. [Google Scholar]
- Phakawatmongkol, W.; Ketsa, S.; Doorn, W.G. Variation in fruit chilling injury among mango cultivars. Postharvest Biol. Technol. 2004, 32, 115–118. [Google Scholar] [CrossRef]
- Affognon, H.; Mutungi, C.; Sanginga, P.; Orgemeister, C. Unpacking postharvest losses in sub-Saharan Africa: A meta-analysis. World Dev. 2015, 66, 49–68. [Google Scholar] [CrossRef] [Green Version]
- Kumar, N.; Pratibha, N.; Singla, M. Enhancement of storage life and quality maintenance of litchi (Litchi Chinensis Sonn.) fruit using chitosan: Pullulan blend antimicrobial edible coating. Int. J. Fruit Sci. 2020, 20 (Suppl. 3), S1662–S1680. [Google Scholar] [CrossRef]
- Olaimat, A.N.; Holley, R.A. Factors influencing the microbial safety of fresh produce: A review. Food Microbiol. 2012, 32, 1–19. [Google Scholar] [CrossRef]
- James, A.; Zikankuba, V. Postharvest management of fruits and vegetable: A potential for reducing poverty, hidden hunger and malnutrition in sub-saharaafrica. Cogent Food Agric. 2017, 3, 1–13. [Google Scholar] [CrossRef]
- Malik, A.U.; Siddiq, F.; Siddiq, M. Packaging of Fresh Mangoes and Processed Mango Products. Handbook of Mango Fruit: Production, Postharvest Science, Processing Technology and Nutrition, 1st ed.; Siddiq, M., Jeffrey, K., Sidhu, B.S., Sidhu, J.S., Eds.; John Wiley & Sons Ltd.: Chichester, UK, 2017. [Google Scholar]
- Tavassoli-Kafrani, E.; Gamage, M.V.; Dumée, L.F.; Kong, L.; Zhao, Z. Edible films and coatings for shelf life extension of mango: A review. Crit. Rev. Food Sci. Nutr. 2020, 1–29. [Google Scholar] [CrossRef]
- Kumar, N.; Neeraj. Polysaccharide-based component and their relevance in edible film/coating: A review. Nutr. Food Sci. 2019, 49, 793–823. [Google Scholar] [CrossRef]
- Lazaridou, A.; Biliaderis, C.G. Thermophysical properties of chitosan, chitosan–starch and chitosan–pullulan films near the glass transition. Carbohydr. Polym. 2002, 48, 179–190. [Google Scholar] [CrossRef]
- Kumar, S.; Mukherjee, A.; Dutta, J. Chitosan based nanocomposite films and coatings: Emerging antimicrobial food packaging alternatives. Trends Food Sci. Technol. 2020, 97, 196–209. [Google Scholar] [CrossRef]
- Cao, Z.; Sun, Y. Chitosan-based rechargeable long-term antimicrobial and biofilm-controlling systems. J. Biomed. Mater. Res. 2009, 89, 960–967. [Google Scholar] [CrossRef]
- Farris, S.; Unalan, I.U.; Introzzi, L.; Fuentes-Alventosa, J.M.; Cozzolino, C.A. Pullulan-based films and coatings for food packaging: Present applications, emerging opportunities, and future challenges. J. Appl. Polym. Sci. 2014, 131. [Google Scholar] [CrossRef] [Green Version]
- Kraśniewska, K.; Pobiega, K.; Gniewosz, M. Pullulan–Biopolymer with potential for use as food packaging. Int. J. Food Eng. 2019, 15. [Google Scholar] [CrossRef]
- Ghasemnezhad, M.; Zareh, S.; Rassa, M.; Sajedi, R.H. Effect of chitosan coating on maintenance of aril quality, microbial population and PPO activity of pomegranate (Punica granatum L. cv. Tarom) at cold storage temperature. J. Sci. Food Agric. 2013, 93, 368–374. [Google Scholar] [CrossRef]
- Mostafidi, M.; Sanjabi, M.R.; Shirkhan, F.; Zahedi, M.T. A review of recent trends in the development of the microbial safety of fruits and vegetables. Trends Food Sci. Technol. 2020, 103, 321–332. [Google Scholar] [CrossRef]
- Kumar, N.; Neeraj, P. Functional properties of pomegranate peel in edible coating/film: A review. Int. J. Post. Technol. Innov. 2020, 7, 205–216. [Google Scholar] [CrossRef]
- Saxena, S.; Sharma, L.; Maity, T. Enrichment of Edible Coatings and Films with Plant Extracts or Essential Oils for the Preservation of Fruits and Vegetables. In Biopolymer-Based Formulations Biomedical and Food Applications; Elsevier: Amsterdam, The Netherlands, 2020; pp. 859–880. [Google Scholar]
- Kumar, N.; Ojha, A.; Singh, R. Preparation and characterization of chitosan-pullulan blended edible films enrich with pomegranate peel extract. React. Funct. Polym. 2019, 144, 104350. [Google Scholar] [CrossRef]
- Wu, J.; Zhong, F.; Li, Y.; Shoemaker, C.F.; Xia, W. Preparation and characterization of pullulan-chitosan and pullulan-carboxymethyl chitosan blended films. Food Hydrocoll. 2013, 30, 82–91. [Google Scholar] [CrossRef]
- Kawhena, T.G.; Opara, U.L.; Fawole, O.A. Optimization of gum arabic and starch-based edible coatings with lemongrass oil using response surface methodology for improving postharvest quality of whole “wonderful” pomegranate fruit. Coatings 2021, 11, 442. [Google Scholar] [CrossRef]
- Kawhena, T.G.; Tsige, A.A.; Opara, U.L.; Fawole, O.A. Application of gum arabic and methyl cellulose coatings enriched with thyme oil to maintain quality and extend shelf life of “acco” pomegranate arils. Plants 2020, 9, 1690. [Google Scholar] [CrossRef]
- Kumar, N.; Ojha, A.; Upadhyay, A.; Singh, R.; Kumar, S. Effect of active chitosan-pullulan composite edible coating enrich with pomegranate peel extract on the storage quality of green bell pepper. LWT 2021, 138, 110435. [Google Scholar] [CrossRef]
- Fawole, O.A.; Riva, S.C.; Opara, U.L. Efficacy of edible coatings in alleviating shrivel and maintaining quality of Japanese plum (Prunus salicina Lindl.) during export and shelf life conditions. Agronomy 2020, 10, 1023. [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi, J.A. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar]
- Aryal, S.; Baniya, K.M.; Danekhu, K.; Kunwar, P.; Gurung, R.; Koirala, N. Total phenolic content, flavonoid content and antioxidant potential of wild vegetables from western Nepal. Plants 2019, 8, 96. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pisoschi, A.M.; Negulescu, G.P. Methods for total antioxidant activity determination: A review. Biochem. Anal. Biochem. 2011, 1, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C.L.W.T. Use of a free radical method to evaluate antioxidant activity. LWT 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Xing, Y.; Li, X.; Xu, Q.; Yun, J.; Lu, Y.; Tang, Y. Effects of chitosan coating enriched with cinnamon oil on qualitative properties of sweet pepper (Capsicum annuum L.). Food Chem. 2011, 124, 1443–1450. [Google Scholar] [CrossRef]
- Aloui, H.; Khwaldia, K.; Sánchez-González, L.; Muneret, L.; Jeandel, C.; Hamdi, M.; Desobry, S. Alginate coatings containing grapefruit essential oil or grapefruit seed extract for grapes preservation. Int. J. Food Sci. Tech. 2014, 49, 952–959. [Google Scholar] [CrossRef]
- Maftoonazad, N.; Ramaswamy, S.H. Application and evaluation of a pectin-based edible coating process for quality change kinetics and shelf-life extension of lime fruit (Citrus aurantifolium). Coatings 2019, 9, 285. [Google Scholar] [CrossRef] [Green Version]
- Kumar, N.; Pratibha, N.; Petkoska, T.A. Improved shelf life and quality of tomato (Solanum lycopersicum L.) by using chitosan-pullulan composite edible coating enriched with pomegranate peel extract. ACS Food Sci. Technol. 2021. [Google Scholar] [CrossRef]
- Gol, B.N.; Rao, T.V.R. Influence of zein and gelatin coatings on the postharvest quality and shelf life extension of mango (Mangifera indica L.). Fruits 2013, 69, 101–115. [Google Scholar] [CrossRef] [Green Version]
- Abebe, Z.; Tola, B.; Yetenayet, M.A. Effects of edible coating materials and stages of maturity at harvest on storage life and quality of tomato (Lycopersicon esculentum Mill.) fruits. Afr. J. Agric. Res. 2017, 12, 550–565. [Google Scholar]
- Yin, C.; Huang, C.; Wang, J.; Liu, Y.; Lu, P.; Huang, L. Effect of chitosan- and alginate-based coatings enriched with cinnamon essential oil microcapsules to improve the postharvest quality of mangoes. Materials 2019, 12, 2039. [Google Scholar] [CrossRef] [Green Version]
- Diab, T.; Biliaderis, G.C.; Gerasopoulos, D.; Sfakiotakis, E. Physicochemical properties and application of pullulan edible films and coatings in fruit preservation. J. Sci. Food Agric. 2001, 81, 988–1000. [Google Scholar] [CrossRef]
- Chien, P.J.; Sheu, F.; Yang, F.H. Effects of edible chitosan coating on quality and shelf life of sliced mango fruit. J. Food Eng. 2007, 78, 225–229. [Google Scholar] [CrossRef]
- Zhu, X.; Wang, Q.; Cao, J.; Jiang, W. Effects of chitosan coating on postharvest quality of mango (Mangifera indica L. cv. Tainong) fruits. J. Food Process Pres. 2008, 32, 770–784. [Google Scholar] [CrossRef]
- Treviño-Garza, M.Z.; García, S.; Flores-González, M.D.S.; Arévalo-Niño, K. Edible active coatings based on pectin, pullulan, and chitosan increase quality and shelf life of strawberries (Fragaria ananassa). J. Food Sci. 2015, 80, 1823–1830. [Google Scholar] [CrossRef]
- Etienne, A.; Génard, M.; Lobit, P.; Mbeguié-A-Mbéguié, D.; Bugaud, C. What controls fleshy fruit acidity? A review of malate and citrate accumulation in fruit cells. J. Exp. Bot. 2013, 64, 1451–1469. [Google Scholar] [CrossRef] [Green Version]
- Muñoz, T.; Sanchez-Ballesta, M.T.; Ruiz-Cabello, J.; Escribano, M.I.; Merodio, C. The acid metabolism of annona fruit during ripening. J. Hortic. Sci. Biotech. 2004, 79, 472–478. [Google Scholar] [CrossRef]
- Eshetu, A.; Ibrahim, M.A.; Forsido, F.S.; Kuyu, G.C. Effect of beeswax and chitosan treatments on quality and shelf life of selected mango (Mangifera indica L.) cultivars. Heliyon 2019, 5, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Tefera, A.; Seyoum, T.; Woldetsadik, K. Effects of disinfection, packaging and evaporatively cooled storage on sugar content of mango. Afr. J. Biotechnol. 2008, 7, 65–72. [Google Scholar]
- Mani, A.; Jain, N.; Singh, K.; Arun, S.M. Effects of aloevera edible coating on quality and postharvest physiology of ber (Zizyphus mauritiana Lamk.) under ambient storage conditions. Int. J. Pure Appl. Biosci. 2017, 5, 43–53. [Google Scholar] [CrossRef]
- Sweetman, C.; Deluc, L.G.; Cramer, G.R.; Ford, C.M.; Soole, K.L. Regulation of malate metabolism in grape berry and other developing fruits. Phytochemistry 2009, 70, 1329–1344. [Google Scholar] [CrossRef]
- Duan, J.; Wu, R.; Strik, C.B.; Zhao, Y. Effect of edible coatings on the quality of fresh blueberries (Duke and Elliott) under commercial storage conditions. Postharvest Biol. Technol. 2011, 59, 71–79. [Google Scholar] [CrossRef]
- Sanaa, S.H.; Aly, E.N.M.; Entsar, S.A. Effect of edible coating on extending the shelf life and quality of fresh cut taro. Am. J. Food Technol. 2017, 12, 124–131. [Google Scholar]
- Sharma, L.; Saini, S.C.; Sharma, K.H. Biocomposite edible coatings based on cross linked-sesame protein and mango puree for the shelf life stability of fresh-cut mango fruit. J. Food Process Eng. 2019, 42, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Ali, A.; Mohamed, T.M.M.; Muhammad, M.; Sijam, K.; Siddiqui, Y. Effect of chitosan coating on the physicochemical characteristics of Eksotika II papaya (Carica papaya L.) fruit during cold storage. Food Chem. 2011, 124, 620–626. [Google Scholar] [CrossRef]
- Dilmacunal, T.; Koyunchu, M.A.; Aktas, H.; Bayindir, D. The effect of several postharvest treatments on shelf life, quality of bunch tomatoes. Not. Bot. Horti Agrobot. 2011, 39, 209–213. [Google Scholar] [CrossRef] [Green Version]
- Paniagua, A.; East, A.; Hindmarsh, J.; Heyes, J.A. Moisture loss is the major cause of firmness change during postharvest storage of blueberry. Postharvest Biol. Technol. 2013, 79, 13–19. [Google Scholar] [CrossRef]
- Mebratie, M.A.; Woldetsadik, K.; Ayalew, A.; Haji, J. Comparative study of different banana ripening methods. Sci. Technol. Arts Res. J. 2015, 4, 32–38. [Google Scholar] [CrossRef] [Green Version]
- Mandal, D.; Sailo, A.; Hazarika, K.T.; Shukla, C.A. Effect of edible coating on shelf life and quality of local mango cv. Rangkuai of Mizoram. Res. Crops 2018, 19, 419–424. [Google Scholar]
- Intalook, W.; Huber, J.; Sargent, S.A. Coating material effect on postharvest quality changes of mango fruit. Postharvest Biol. Technol. 2006, 28, 247257. [Google Scholar]
- Zahedi, M.S.; Hosseini, S.M.; Karimi, M.; Ebrahimzadeh, A. Effects of postharvest polyamine application and edible coating on maintaining quality of mango (Mangifera indica L.) cv. Langra during cold storage. Food Sci. Nutr. 2019, 7, 433–441. [Google Scholar] [CrossRef] [Green Version]
- Toor, R.K.; Savage, G.P. Antioxidant activity in different fractions of tomatoes. Food Res. Int. 2005, 38, 487–494. [Google Scholar] [CrossRef]
- Lourenço, S.C.; Moldão-Martins, M.; Alves, V.D. Antioxidants of natural plant origins: From sources to food industry applications. Molecules 2019, 24, 4132. [Google Scholar] [CrossRef] [Green Version]
- Kharchoufi, S.; Parafati, L.; Licciardello, F.; Muratore, G.; Hamdi, M.; Cirvilleri, G.; Cristina, R. Edible coatings incorporating pomegranate peel extract and biocontrol yeast to reduce Penicillium digitatum postharvest decay of oranges. Food Microbiol. 2018, 74, 107–112. [Google Scholar] [CrossRef]
- Taberner, V.; Sanchís, E.; Mateos, M.; Palou, L.; Pérez-Gago, M.B. Pectin-based edible coatings formulated with pomegranate peel extracts and other antibrowning agents to extend shelf life of fresh-cut ‘RojoBrillante’. Acta. Hortic. 2018, 1194, 887–894. [Google Scholar] [CrossRef]
- Wang, S.Y.; Gao, H. Effect of chitosan-based edible coating on antioxidants, antioxidant enzyme system, and postharvest fruit quality of strawberries (Fragaria x aranassa Duch.). LWT Food Sci. Technol. 2013, 52, 71–79. [Google Scholar] [CrossRef]
- Zam, W. Effect of alginate and chitosan edible coating enriched with olive leaves extract on the shelf life of sweet cherries (Prunusavium L.). J. Food Qual. 2019, 2019, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Serradilla, M.J.; Lozano, M.; Bernalte, M.J.; Ayuso, M.C.; López-Corrales, M.; González-Gómez, D. Physicochemical and bioactive properties evolution during ripening of “Ambrunés” sweet cherry cultivar. LWT Food Sci. Technol. 2011, 44, 199–205. [Google Scholar] [CrossRef]
- Alyson, E.M.; Robertson, D.; Koh, E. Optimizing the extraction of procyanidins oligomers through decamer. Nutr. Food Sci. 2017, 4, 555–559. [Google Scholar]
- Howard, L.R.; Talcott, S.T.; Brenes, C.H.; Villalon, B. Changes in phytochemical and antioxidant activity of selected pepper cultivars (Capsicum species) as influenced by maturity. J. Agric. Food Chem. 2020, 48, 1713–1720. [Google Scholar] [CrossRef]
- Ali, A.; Maqbool, M.; Alderson, G.P.; Zahid, N. Effect of gum arabic as an edible coating on antioxidant capacity of tomato (Solanum lycopersicum L.) fruit during storage. Postharvest Biol. Technol. 2013, 76, 119–124. [Google Scholar] [CrossRef]
- Lobo, V.; Patil, A.; Phatak, A.; Chandra, N. Free radicals, antioxidants and functional foods: Impact on human health. Pharmacogn. Rev. 2010, 4, 118–126. [Google Scholar] [CrossRef] [Green Version]
- Kafkas, N.B.; Kosar, M.; Oz, A.T.; Mitchell, A.E. Advanced analytical methods for phenolics in fruits. J. Food Qual. 2018, 26, 1–6. [Google Scholar] [CrossRef]
- Ma, X.; Wu, H.; Liu, L.; Yao, Q.; Wang, S.; Zhan, R. Polyphenolic compounds and antioxidant properties in mango fruits. Sci. Hortic. 2011, 129, 102–107. [Google Scholar] [CrossRef]
- Palafox-Carlos, H.; Yahia, E.M.; Gonzalez-Aguilar, G.A. Identification and quantification of major phenolic compounds from mango (Mangifera indica, cv. Ataulfo) fruit by HPLC-DAD-MS/MS-ESI and their individual contribution to the antioxidant activity during ripening. Food Chem. 2012, 135, 105–111. [Google Scholar] [CrossRef]
- Liu, F.; Fu, S.; Bi, X.; Chen, F.; Liao, X.; Hu, X.; Wu, J. Physico-Chemical and antioxidant properties of four mango (Mangifera indica) cultivars in China. Food Chem. 2013, 138, 396–405. [Google Scholar] [CrossRef]
- Tayel, A.A.; Moussa, S.H.; Salem, M.F.; Mazrou, K.E.; El-Tras, W.F. Control of citrus molds using bioactive coatings incorporated with fungal chitosan/plant extracts composite. J. Sci. Food Agric. 2015, 96, 1306–1312. [Google Scholar] [CrossRef]
- Krasniewska, K.; Gniewosz, M.; Synowiec, A.; Przybyl, J.L.; Baczek, K.; Weglarz, Z. The use of pullulan coating enriched with plant extracts from Satureja hortensis L. to maintain pepper and apple quality and safety. Postharvest Biol. Technol. 2014, 90, 63–72. [Google Scholar] [CrossRef]
- Krasniewska, K.; Gniewosz, M.; Synowiec, A.; Przybyl, J.L.; Baczek, K.; Weglarz, Z. The application of pullulan coating enriched with extracts from Bergenia crassifolia to control the growth of food microorganisms and improve the quality of peppers and apples. Food Bioprod. Process. 2015, 94, 422–433. [Google Scholar] [CrossRef]
- Leon-Zapata, M.A.D.; Saenz-Galindo, A.; Rojas-Molina, R.; Rodriguez-Herrera, R.; Jasso-Cantu, D.; Aguilar, C.N. Edible candelilla wax coating with fermented extract of tarbush improves the shelf life and quality of apples. Food Packag Shelf Life 2015, 3, 70–75. [Google Scholar] [CrossRef] [Green Version]
- Guerreiro, A.C.; Gago, C.M.; Faleiro, M.L.; Miguel, M.G.; Antunes, M.D. The effect of alginate-based edible coatings enriched with essential oils constituents on Arbutus unedo L. fresh fruit storage. Postharvest Biol. Technol. 2015, 100, 226–233. [Google Scholar] [CrossRef]
Samples | Scales | Days of Storage | ||||||
---|---|---|---|---|---|---|---|---|
0 | 3 | 6 | 9 | 12 | 15 | 18 | ||
L* | ||||||||
Room control | 59.41 ± 0.53 d | 62.78 ± 0.09 c | 65.18 ± 0.07 b | 68.62 ± 0.32 a | N/A | N/A | N/A | |
Room coated | 59.41 ± 0.53 f | 61.34 ± 0.27 e | 62.23 ± 0.06 d | 63.83 ± 0.11 c | 65.24 ± 0.20 b | 65.90 ± 0.05 b | 66.93 ± 0.14 a | |
4 °C control | 59.41 ± 0.53 g | 61.28 ± 0.21 f | 62.16 ± 0.16 e | 62.38 ± 0.10 d | 64.40 ± 0.65 c | 66.33 ± 0.32 b | 67.38 ± 0.13 a | |
4 °C coated | 59.41 ± 0.53 g | 60.24 ± 0.11 f | 61.03 ± 0.06 e | 61.96 ± 0.11 d | 62.85 ± 0.36 c | 63.74 ± 0.20 b | 64.24 ± 0.33 a | |
a* | ||||||||
Room control | −16.21 ± 0.03 d | −10.86 ± 0.07 c | −7.08 ± 0.06 b | −3.23 ± 0.16 a | N/A | N/A | N/A | |
Room coated | −16.21 ± 0.03 g | −14.62 ± 0.31 f | −12.05 ± 0.06 e | −9.14 ± 0.11 d | −5.64 ± 0.19 c | −2.44 ± 0.27 b | 1.57 ± 0.10 a | |
4 °C control | −16.21 ± 0.03 g | −15.26 ± 0.14 f | −14.46 ± 0.40 e | −13.50 ± 0.38 d | −12.45 ± 0.39 c | −11.44 ± 0.14 b | −8.73 ± 0.40 a | |
4 °C coated | −16.21 ± 0.03 f | −16.19 ± 0.14 f | −15.44 ± 0.22 e | −14.60 ± 0.21 d | −13.40 ± 0.29 c | −12.25 ± 0.17 b | −10.17 ± 0.17 a | |
b* | ||||||||
Room control | 32.49 ± 0.32 d | 38.48 ± 0.26 c | 42.52 ± 0.26 b | 48.78 ± 0.18 a | N/A | N/A | N/A | |
Room coated | 32.49 ± 0.35 g | 35.55 ± 0.33 f | 37.77 ± 0.10 e | 39.17 ± 0.51 d | 44.05 ± 0.48 c | 46.46 ± 0.46 b | 48.44 ± 0.30 a | |
4 °C control | 32.49 ± 0.32 g | 33.43 ± 0.43 f | 34.24 ± 0.34 e | 35.42 ± 0.35 d | 36.54 ± 0.37 c | 37.57 ± 0.54 b | 39.15 ± 0.10 a | |
4 °C coated | 32.49 ± 0.32 g | 33.06 ± 0.05 f | 33.70 ± 0.03 e | 34.46 ± 0.34 d | 35.31 ± 0.19 c | 35.96 ± 0.05 b | 36.39 ± 0.32 a | |
ΔE | ||||||||
Room control | 0 | 8.71 ± 0.78 c | 14.79 ± 0.91 b | 22.77 ± 0.68 a | N/A | N/A | N/A | |
Room coated | 0 | 3.95 ± 0.34 f | 7.29 ± 0.22 e | 10.68 ± 0.23 d | 16.71 ± 0.30 c | 20.66 ± 0.45 b | 25.04 ± 0.77 a | |
4 °C control | 0 | 2.3 ± 0.67 f | 3.7 ± 0.25 e | 4.97 ± 0.73 d | 7.45 ± 0.28 c | 9.82 ± 0.34 b | 12.8 ± 0.39 a | |
4 °C coated | 0 | 1.01 ± 0.32 f | 2.16 ± 0.02 e | 3.6 ± 0.17 d | 5.26 ± 0.69 c | 6.28 ± 0.26 b | 8.66 ± 0.12 a |
Samples | Sensory Characteristics | Days of Storage | ||||||
---|---|---|---|---|---|---|---|---|
0 | 3 | 6 | 9 | 12 | 15 | 18 | ||
Room control | Freshness | 8.5 ± 0.91 a | 7.9 ± 0.69 b | 6.0 ± 0.63 c | 5.2 ± 0.89 d | N/A | N/A | N/A |
Room coated | 8.5 ± 0.91 a | 8.1 ± 0.52 a | 7.6 ± 0.74 b | 6.9 ± 0.56 c | 6.1 ± 0.93 c | 5.8 ± 0.35 d | 5.1 ± 0.42 e | |
4 °C control | 8.5 ± 0.91 a | 8.1 ± 0.47 a | 7.6 ± 0.56 b | 7.0 ± 0.46 c | 6.9 ± 0.56 d | 6.5 ± 0.47 e | 6.2 ± 0.83 f | |
4 °C coated | 8.5 ± 0.91 a | 8.2 ± 0.19 a | 7.9 ± 0.28 b | 7.8 ± 0.31 c | 7.4 ± 0.36 d | 7.2 ± 0.19 e | 6.8 ± 0.46 f | |
Room control | Color | 8.8 ± 0.48 a | 7.9 ± 0.41 b | 7.1 ± 0.35 c | 5.8 ± 0.60 d | N/A | N/A | N/A |
Room coated | 8.8 ± 0.48 a | 8.2 ± 0.53 b | 7.8 ± 0.45 c | 7.1 ± 0.40 d | 6.8 ± 0.27 e | 6.1 ± 0.36 f | 5.9 ± 0.97 g | |
4 °C control | 8.8 ± 0.48 a | 8.4 ± 0.90 a | 8.0 ± 0.75 ab | 7.6 ± 0.14 c | 7.3 ± 0.28 c | 7.0 ± 0.48 d | 6.6 ± 0.68 e | |
4 °C coated | 8.8 ± 0.48 a | 8.6 ± 0.23 a | 8.4 ± 0.05 ab | 8.2 ± 0.46 abc | 8.0 ± 0.86 d | 7.8 ± 0.31 e | 7.5 ± 0.47 f | |
Room control | Texture | 8.8 ± 0.37 a | 8.0 ± 0.45 b | 6.5 ± 0.66 c | 5.6 ± 0.65 d | N/A | N/A | N/A |
Room coated | 8.8 ± 0.37 a | 8.4 ± 0.58 a | 8.0 ± 0.42 b | 7.2 ± 0.34 c | 6.4 ± 0.35 d | 6.0 ± 0.28 e | 5.6 ± 0.46 f | |
4 °C control | 8.8 ± 0.37 a | 8.6 ± 0.17 a | 8.0 ± 0.31 b | 7.4 ± 0.39 c | 7.0 ± 0.24 d | 6.6 ± 0.76 e | 6.2 ± 0.21 f | |
4 °C coated | 8.8 ± 0.37 a | 8.8 ± 0.36 a | 8.4 ± 0.19 b | 8.0 ± 0.23 c | 7.8 ± 0.18 d | 7.5 ± 0.46 e | 7.2 ± 0.34 f | |
Room control | Taste | 8.6 ± 0.30 a | 8.1 ± 0.48 b | 7.0 ± 0.56 c | 5.4 ± 0.69 d | N/A | N/A | N/A |
Room coated | 8.6 ± 0.30 a | 8.2 ± 0.26 b | 7.6 ± 0.23 c | 7.1 ± 0.18 d | 6.4 ± 0.23 e | 5.9 ± 0.17 f | 5.4 ± 0.54 g | |
4 °C control | 8.6 ± 0.30 a | 8.4 ± 0.29 b | 7.9 ± 0.65 c | 7.4 ± 0.57 d | 7.1 ± 0.45 e | 6.7 ± 0.56 f | 6.1 ± 0.47 g | |
4 °C coated | 8.6 ± 0.30 a | 8.6 ± 0.31 a | 8.2 ± 0.47 b | 7.9 ± 0.48 c | 7.5 ± 0.24 d | 7.1 ± 0.24 e | 6.9 ± 0.71 f | |
Room control | OAA | 8.67 ± 0.15 a | 7.97 ± 0.09 b | 6.65 ± 0.50 c | 5.5 ± 0.25 d | N/A | N/A | N/A |
Room coated | 8.67 ± 0.15 a | 8.22 ± 0.12 b | 7.75 ± 0.19 c | 7.07 ± 0.12 d | 6.42 ± 0.65 e | 5.95 ± 0.7 f | 5.5 ± 0.86 g | |
4 °C control | 8.67 ± 0.15 a | 8.37 ± 0.20 b | 7.87 ± 0.18 c | 7.35 ± 0.25 d | 7.07 ± 0.60 e | 6.7 ± 0.85 f | 6.27 ± 0.80 g | |
4 °C coated | 8.67 ± 0.15 a | 8.55 ± 0.25 b | 8.22 ± 0.23 c | 7.97 ± 0.17 d | 7.67 ± 0.55 e | 7.4 ± 0.61 f | 7.1 ± 0.75 g |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumar, N.; Pratibha; Neeraj; Petkoska, A.T.; AL-Hilifi, S.A.; Fawole, O.A. Effect of Chitosan–Pullulan Composite Edible Coating Functionalized with Pomegranate Peel Extract on the Shelf Life of Mango (Mangifera indica). Coatings 2021, 11, 764. https://doi.org/10.3390/coatings11070764
Kumar N, Pratibha, Neeraj, Petkoska AT, AL-Hilifi SA, Fawole OA. Effect of Chitosan–Pullulan Composite Edible Coating Functionalized with Pomegranate Peel Extract on the Shelf Life of Mango (Mangifera indica). Coatings. 2021; 11(7):764. https://doi.org/10.3390/coatings11070764
Chicago/Turabian StyleKumar, Nishant, Pratibha, Neeraj, Anka Trajkovska Petkoska, Sawsan Ali AL-Hilifi, and Olaniyi Amos Fawole. 2021. "Effect of Chitosan–Pullulan Composite Edible Coating Functionalized with Pomegranate Peel Extract on the Shelf Life of Mango (Mangifera indica)" Coatings 11, no. 7: 764. https://doi.org/10.3390/coatings11070764
APA StyleKumar, N., Pratibha, Neeraj, Petkoska, A. T., AL-Hilifi, S. A., & Fawole, O. A. (2021). Effect of Chitosan–Pullulan Composite Edible Coating Functionalized with Pomegranate Peel Extract on the Shelf Life of Mango (Mangifera indica). Coatings, 11(7), 764. https://doi.org/10.3390/coatings11070764