Image Definition Evaluations on Denoised and Sharpened Wood Grain Images
Abstract
:1. Introduction
2. Materials and Methods
2.1. Wood Specimens
2.2. Image Acquisition of Wood Grain
2.3. Parameter Settings in Dust & Scratches and Unsharp Mask
2.4. Calculation Methods for Evaluation Values
3. Results and Discussion
3.1. Noise Reduction
3.2. Sharpening
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Amor, A.; Cloutier, A.; Beauregard, R. Determination of physical and mechanical properties of finishing papers used for wood-based composite products. Wood Fiber Sci. 2009, 41, 117–126. [Google Scholar]
- Peng, X.; Zhang, Z. Surface properties of different natural precious decorative veneers by plasma modification. Eur. J. Wood Prod. 2019, 77, 125–137. [Google Scholar] [CrossRef]
- Feng, X.; Wu, Z.; Sang, R.; Wang, F.; Zhu, Y.; Wu, M. Surface design of wood-based board to imitate wood texture using 3D printing technology. BioResources 2019, 14, 8196–8211. [Google Scholar]
- Sang, R.; Manley, A.; Wu, Z.; Feng, X. Digital 3D Wood Texture: UV-Curable Inkjet Printing on Board Surface. Coatings 2020, 10, 1144. [Google Scholar] [CrossRef]
- Liu, A.J.; Dong, Z.; Hašan, M.; Marschner, S. Simulating the structure and texture of solid wood. ACM Trans. Graph. 2016, 35, 1–11. [Google Scholar] [CrossRef]
- Erdenebat, M.; Kim, B.; Piao, Y.; Park, S.; Kwon, K.; Piao, M.; Yoo, K.; Kim, N. Three-dimensional image acquisition and reconstruction system on a mobile device based on computer-generated integral imaging. Appl. Opt. 2017, 56, 7796–7802. [Google Scholar] [CrossRef]
- Jones, L.; Nellist, P. Identifying and Correcting Scan Noise and Drift in the Scanning Transmission Electron Microscope. Microsc. Microanal. 2013, 19, 1–11. [Google Scholar] [CrossRef]
- Zhang, B.; Allebach, J.P. Adaptive bilateral filter for sharpness enhancement and noise removal. IEEE Trans. Image Process. 2008, 17, 664–678. [Google Scholar] [CrossRef]
- Wen, J.; Li, Z.; Xiao, J. Noise removal in tree radar B-scan images based on Shearlet. Wood Res. 2020, 65, 1–12. [Google Scholar] [CrossRef]
- Chen, G.; Panetta, K.; Agaian, S. Color image attribute and quality measurements. Proc. SPIE Int. Soc. Opt. Eng. 2014, 9120, 91200T. [Google Scholar]
- Panetta, K.; Chen, G.; Agaian, S. No reference color image contrast and quality measures. IEEE Trans. Consum. Electron. 2013, 59, 643–651. [Google Scholar] [CrossRef]
- Nakamura, M.; Miyake, Y.; Nakano, T. Effect of image characteristics of edge-grain patterns on visual impressions. J. Wood Sci. 2012, 58, 505–512. [Google Scholar] [CrossRef] [Green Version]
- Burger, W.; Burge, M.J. 5 Filters. In Principles of Digital Image Processing Fundamental Technique; Burger, W., Burge, M.J., Eds.; Springer: London, UK, 2009; pp. 97–130. [Google Scholar]
- Woojae, K.; Kim, H.; Oh, H.; Kim, J.; Lee, S. No-reference perceptual sharpness assessment for ultra-high-definition images. In Proceedings of the 2016 IEEE International Conference on Image Processing (ICIP), Phoenix, AZ, USA, 25–28 September 2016; pp. 86–90. [Google Scholar]
- Yang, C.Y.; Liu, S.; Yang, M.H. Hallucinating Compressed Face Images. Int. J. Comput. Vis. 2018, 126, 1–18. [Google Scholar] [CrossRef]
- Li, M.; Ghosal, S. Fast Translation Invariant Multiscale Image Denoising. IEEE Trans. Image Process. 2015, 24, 4876–4887. [Google Scholar] [CrossRef]
- Joshi, N.; Zitnick, C.; Szeliski, R.; Kriegman, D. Image deblurring and denoising using color priors. In Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009; pp. 1550–1557. [Google Scholar]
- Garg, B. Restoration of highly salt-and-pepper-noise-corrupted images using novel adaptive trimmed median filter. Signal Image Video Process. 2020, 14, 1–9. [Google Scholar] [CrossRef]
- Yi, Y.; Yu, X.; Wang, L.; Yang, Z. Image quality assessment based on structural distortion and image definition. Int. Conf. Comput. Sci. Softw. Eng. 2008, 6, 253–256. [Google Scholar]
- Fraser, B.; Schewe, J. Chapter Four: Sharpening Tools, Chapter Five: Industrial-Strength Sharpening Techniques. In Real World Image Sharpening with Adobe Photoshop, Camera Raw, and Lightroom; Fraser, B., Schewe, J., Eds.; Peachpit Press: Berkeley, CA, USA, 2010; pp. 121–292. [Google Scholar]
- Abdul Hamid, L.B.; Rosli, N.R.; Mohd Khairuddin, A.S.; Mokhtar, N.; Yusof, R. Denoising module for wood texture images. Wood Sci. Technol. 2018, 52, 1539–1554. [Google Scholar] [CrossRef]
- Li, Q.; Feng, H.; Xu, Z. Auto-focus apparatus with digital signal processor. Proc. SPIE Int. Soc. Opt. Eng. 2005, 5633, 416–423. [Google Scholar]
- Wang, G.; Zhu, J.; Cao, P.; Liu, W. Research on Vickers Hardness Image Definition Evaluation Function. Adv. Mater. Res. 2010, 129–131, 134–138. [Google Scholar] [CrossRef]
- Chen, G.; Zhu, M.; Qiu, X. The Study of Image Definition Evaluation Function Based on Wavelet Filter. IEEE Symp. Virtual Environ. Hum. Comput. Interfaces Meas. Syst. 2007, 131, 134. [Google Scholar]
- Tian, Y.; Hu, H.; Cui, H.; Yang, S.; Qi, J.; Xu, Z.; Li, L. Three-dimensional surface microtopography recovery from a multifocus image sequence using an omnidirectional modified Laplacian operator with adaptive window size. Appl. Opt. 2017, 56, 6300–6310. [Google Scholar] [CrossRef] [PubMed]
- Senel, H.G. Gradient estimation using wide support operators. IEEE Trans. Image Process. Publ. IEEE Signal Process. Soc. 2009, 18, 867–878. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Zhao, H.; Li, T.; Yan, P.; Zhao, K.; Qi, C.; Gao, F. Reference-free determination of tissue absorption coefficient by modulation transfer function characterization in spatial frequency domain. BioMed. Eng. Online 2017, 16, 100–114. [Google Scholar] [CrossRef]
- Kudomi, S.; Ueda, K.; Ueda, Y.; Kawakubo, M.; Sanada, T. Evaluation of the spatial resolution of multiplanar reconstruction images. Radiol. Phys. Technol. 2008, 1, 229–233. [Google Scholar] [CrossRef]
- Frasnedo, S.; Sandou, G.; Duc, G.; Chapuis, C.; Feyel, P. Line of sight controller tuning using Bayesian optimisation: Application to a double stage stabilisation platform. Int. J. Syst. Sci. 2008, 50, 1–15. [Google Scholar] [CrossRef]
- Davies, A.; Fennessy, P. Chapter 6: Digital image processing. In Digital Imaging for Photographers; Davies, A., Fennessy, P., Eds.; Focal Press: Oxford, UK, 2001; pp. 93–141. [Google Scholar]
- Ranjan, N.; Mishra, B.; Rath, A.; Swain, S. A Time Efficient Clustering Algorithm for Gray Scale Image Segmentation. Int. J. Comput. Vis. Image Process. 2013, 3, 22–32. [Google Scholar]
Scheme | Tree Name | Scientific Name | Production Area | Wood Size (L × W × T) |
---|---|---|---|---|
1 | Teak | T. grandis | China | 900 mm × 120 mm × 20 mm |
2 | Balsamo | M. balsamum | Brazil | 900 mm × 120 mm × 20 mm |
3 | Walnut | J. nigra | China | 900 mm × 120 mm × 20 mm |
4 | Birch | B. papyrifera | China | 900 mm × 120 mm × 20 mm |
Index | Scheme I | Scheme II | Scheme III | Scheme IV | Scheme V | Scheme VI | Original Images |
---|---|---|---|---|---|---|---|
Radius (pixels) | 1 | 1 | 1 | 2 | 2 | 2 | / |
Threshold (levels) | 10 | 20 | 30 | 30 | 40 | 50 | / |
Teak | | | | | | | |
Balsamo | | | | | | | |
Walnut | | | | | | | |
Birch | | | | | | | |
Index | Scheme III | Scheme VII | Scheme VI | Scheme VIII | Original Images |
---|---|---|---|---|---|
Radius (pixels) | 1 | 1 | 2 | 2 | / |
Threshold (levels) | 30 | 35 | 50 | 55 | / |
Index | Teak | ||||
Scheme III | Scheme VII | Scheme VI | Scheme VIII | Original Images | |
RGF | 0 | 0.2036 | 0.0818 | 0.2905 | 1 |
PSNR | 37.0392 | 37.4444 | 33.5832 | 34.4001 | / |
SSIM | 0.9967 | 0.9969 | 0.9927 | 0.9939 | 1 |
Index | Balsamo | ||||
Scheme III | Scheme VII | Scheme VI | Scheme VIII | Original Images | |
RGF | 0 | 0.4025 | 0.2160 | 0.4515 | 1 |
PSNR | 36.9656 | 38.6653 | 33.9870 | 35.2568 | / |
SSIM | 0.9969 | 0.9978 | 0.9940 | 0.9954 | 1 |
Index | Walnut | ||||
Scheme III | Scheme VII | Scheme VI | Scheme VIII | Original Images | |
RGF | 0 | 0.4361 | 0.4453 | 0.6706 | 1 |
PSNR | 35.0493 | 37.0756 | 33.7263 | 35.7349 | / |
SSIM | 0.9856 | 0.9912 | 0.9830 | 0.9895 | 1 |
Index | Birch | ||||
Scheme III | Scheme VII | Scheme VI | Scheme VIII | Original Images | |
RGF | 0 | 0.5359 | 0.7756 | 0.9001 | 1 |
PSNR | 36.0982 | 39.0789 | 39.0534 | 42.1799 | / |
SSIM | 0.9919 | 0.9960 | 0.9963 | 0.9982 | 1 |
Index | Scheme I | Scheme II | Scheme III | Scheme IV | Denoised Images | Original Images |
---|---|---|---|---|---|---|
Amount (%) | 50 | 50 | 50 | 50 | / | / |
Radius (pixels) | 1.5 | 1.5 | 1.5 | 1.5 | / | / |
Threshold (levels) | 0 | 5 | 10 | 20 | / | / |
Teak | | | | | | |
Balsamo | | | | | | |
Walnut | | | | | | |
Birch | | | | | | |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mao, J.; Wu, Z.; Feng, X. Image Definition Evaluations on Denoised and Sharpened Wood Grain Images. Coatings 2021, 11, 976. https://doi.org/10.3390/coatings11080976
Mao J, Wu Z, Feng X. Image Definition Evaluations on Denoised and Sharpened Wood Grain Images. Coatings. 2021; 11(8):976. https://doi.org/10.3390/coatings11080976
Chicago/Turabian StyleMao, Jingjing, Zhihui Wu, and Xinhao Feng. 2021. "Image Definition Evaluations on Denoised and Sharpened Wood Grain Images" Coatings 11, no. 8: 976. https://doi.org/10.3390/coatings11080976
APA StyleMao, J., Wu, Z., & Feng, X. (2021). Image Definition Evaluations on Denoised and Sharpened Wood Grain Images. Coatings, 11(8), 976. https://doi.org/10.3390/coatings11080976