First-Principle Study of Co-Adsorption Behavior of H2O and O2 on δ-Pu (100) Surface
Abstract
:1. Introduction
2. Computational Model and Method
2.1. Calculation Method
2.2. Computational Model
3. Results and Discussions
3.1. Adsorption Configuration and Adsorption Energy
3.2. Bader Charge Distribution Analysis
3.3. Differential Charge Density Analysis
3.4. Electronic Density of States Analysis
3.5. Surface Work Function Analysis
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Shim, J.H.; Haule, K.; Kotliar, G. Fluctuating valence in a correlated solid and the anomalous properties of δ-plutonium. Nature 2007, 446, 513–516. [Google Scholar] [CrossRef] [Green Version]
- Hecker, S.S. Plutonium—An Element Never at Equilibrium. Metall. Mater. Trans. A 2008, 39, 1585–1592. [Google Scholar] [CrossRef]
- Luo, W.; Wang, Q.; Wang, X.; Gao, T. The plutonium chemistry of Pu+O2 system: The theoretical investigation of the plutonium–oxygen interaction. J. Iran. Chem. Soc. 2019, 16, 1157–1162. [Google Scholar] [CrossRef]
- Atta-Fynn, R.; Ray, A.K. A first principles study of the adsorption and dissociation of CO2 on the δ-Pu (111) surface. Eur. Phys. J. B Condens. Matter Complex Syst. 2009, 70, 171–184. [Google Scholar] [CrossRef]
- Qi, C.B.; Wang, T.; Li, R.S.; Wang, J.T.; Qin, M.A.; Tao, S.H. First-principles study of co-adsorption behavior of O2 and CO2 molecules on δ-Pu (100) surface. Chin. Phys. B 2021, 30, 026601. [Google Scholar] [CrossRef]
- Goldman, N.; Morales, M.A. A First-Principles Study of Hydrogen Diffusivity and Dissociation on δ-Pu (100) and (111) Surfaces. J. Phys. Chem. C 2017, 121, 17950–17957. [Google Scholar] [CrossRef]
- Li, P.; Niu, W.; Gao, T.; Wang, H.; Water, O. Water OH Bond Activation by Gas-Phase Plutonium Atoms: Reaction Mechanisms and Ab Initio Molecular Dynamics Study. Chemphyschem 2015, 15, 3078–3088. [Google Scholar] [CrossRef] [PubMed]
- Wilkinson, W.D. Plutonium and its alloys. Nature 1960, 188, 826–827. [Google Scholar]
- Raynor, J.B.; Sackman, J.F. Oxidation of Plutonium in Moist Air and Argon. Nature 1963, 197, 587–588. [Google Scholar] [CrossRef]
- Haschke, J.M.; Allen, T.H.; Morales, L.A. Surface and Corrosion Chemistry of PLUTONIUM. Fas Org. 2000, 26, 252–273. [Google Scholar]
- Hecker, S.S.; Stevens, M.F. Mechanical Behavior of Plutonium and Its Alloys. Los Alamos Sci. 2000, 26, 336–355. [Google Scholar]
- Haschke, J.M.; Allen, T.H.; Morales, L.A. Reactions of plutonium dioxide with water and oxygen-hydrogen mixtures: Mechanisms for corrosion of uranium and plutonium. U.S. Dep. Energy 1999, 1–43. [Google Scholar]
- Delley, B. An all-electron numerical method for solving the local density functional for polyatomic molecules. J. Chem. Phys. 1990, 92, 508–517. [Google Scholar] [CrossRef]
- Delley, B. A scattering theoretic approach to scalar relativistic corrections on bonding. Int. J. Quantum Chem. 1998, 69, 423–433. [Google Scholar] [CrossRef]
- Delley, B.J. From molecules to solids with the DMol3 approach. J. Chem. Phys. 2000, 113, 7756–7764. [Google Scholar] [CrossRef]
- Luo, W.H.; Meng, D.Q.; Li, G.; Chen, H.C. Density functional study of CO adsorption on Pu (100) surface. Acta Phys. Sin. 2008, 57, 160–164. [Google Scholar]
- Xiong, X.L.; Wei, H.Y.; Luo, S.Z.; Wang, G.Q.; Hui, R. Adsorption structure and electronic state of CO adsorbed on δ-Pu (100) surface. J. Sichuan Univ. (Nat. Sci. Ed.) 2011, 48, 126–132. [Google Scholar]
- Jomard, G.; Bottin, F.; Geneste, G. Water adsorption and dissociation on the PuO2 (110) surface. J. Nucl. Mater. 2014, 451, 28–34. [Google Scholar] [CrossRef]
- Huda, M.N.; Ray, A.K. Electronic structures and bonding of oxygen on plutonium layers. Eur. Phys. J. B Condens. Matter Complex Syst. 2004, 40, 337–346. [Google Scholar] [CrossRef]
- Huda, M.N.; Ray, A.K. A density functional study of molecular oxygen adsorption and reaction barrier on Pu (100) surface. Phys. Condens. Matter 2005, 43, 131–141. [Google Scholar] [CrossRef]
- Hecker, S.S.; Stevens, M.F. Aging of Plutonium and Its Alloys. Los Alamos Sci. 2000, 26, 238–243. [Google Scholar]
- Li, G.; Lai, X.C.; Sun, Y. An All-electron FLAPW Study of Geometric and Electronic Structures for δ-Pu Monolayer. Acta Phys. Chim. Sin. 2005, 21, 686–689. [Google Scholar]
- Kresse, G.; Furthmüller, J. Furthmüller. Efficient Iterative Schemes for Ab Initio Total-Energy Calculations Using a Plane-Wave Basis Set. Phys. Rev. B 1996, 54, 11169. [Google Scholar] [CrossRef]
- Kresse, G.; Hafner, J. Ab initio molecular dynamics for open-shell transition metals. Phys. Rev. B 1993, 48, 13115–13118. [Google Scholar] [CrossRef]
- Blochl, P.E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979. [Google Scholar] [CrossRef] [Green Version]
- Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Monkhorst, H.J.; Pack, J.D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192. [Google Scholar] [CrossRef]
- Jijun, G.; Guoping, L.; Hongyuan, W. First-principles study on adsorption behavior of O2 on δ-Pu (100) surface. Comput. Appl. Chem. 2013, 30, 026601. [Google Scholar]
- Dholabhai, P.P.; Ray, A.K. Adsorption structure and electronic state of oxygen on δ-Pu (111) surface. Comput. Appl. Chem. 2009, 26, 913–916. [Google Scholar]
- Atta-Fynn, R.; Ray, A.K. A Relativistic DFT Study of Water Adsorption on delta-Plutonium (111) Surface. Chem. Phys. Lett. 2009, 470, 233–239. [Google Scholar] [CrossRef]
- Hongyuan, W. Adsorption, dissociation and diffusion of atoms and molecules on δ-Pu. China Acad. Eng. Phys. 2010, 75, 506. [Google Scholar]
- Green, D.W.; Reedy, G.T. ChemInform Abstract: INFRARED SPECTRA OF MATRIX-ISOLATED PLUTONIUM OXIDES. Chem. Inf. 1978, 9, 544–551. [Google Scholar] [CrossRef]
- Haire, R.G. High-temperature vaporization of transplutonium oxides. J. Alloy. Compd. 1994, 213, 185–190. [Google Scholar] [CrossRef]
- The Materials Project. Materials Data on PuH2 (SG:225) by Materials Project. 2020. [CrossRef]
- The Materials Project. Materials Data on PuH3 (SG:194) by Materials Project. 2016. [CrossRef]
- Wei, S.; Ma, L.; Yang, Z.; Dai, X.; Zhang, K. Electronic Structure and Characteristic of Co Chemisorptionon Si (100) SurfaceCo. J. Semicond. 2003, 24, 1040–1043. [Google Scholar]
- Sanville, E.; Kenny, S.D.; Smith, R.; Henkelman, G. Improved grid-based algorithm for Bader charge allocation. J. Comput. Chem. 2010, 28, 899–908. [Google Scholar] [CrossRef] [PubMed]
- Tang, W.; Sanville, E.; Henkelman, G. A grid-based Bader analysis algorithm without lattice bias. J. Phys. Condens. Matter Inst. Phys. J. 2009, 21, 084204. [Google Scholar] [CrossRef] [PubMed]
- Yu, M.; Trinkle, D.R. Accurate and efficient algorithm for Bader charge integration. J. Chem. Phys. 2011, 134, 064111. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.K.; Shin, J.; Moon, S.H.; Kim, J.; Lee, S.C. Theoretical Investigation of the Adsorption and C–C Bond Scission of CCH3 on the (111) and (100) Surfaces of Pd: Comparison with Pt. J. Phys. Chem. C 2013, 117, 18131–18138. [Google Scholar] [CrossRef]
- Tsuji, Y.; Yoshizawa, K. Adsorption and Activation of Methane on the (110) Surface of Rutile-type Metal Dioxides. J. Phys. Chem. C. Nanomater. Interfaces 2018, 122, 15359–15381. [Google Scholar] [CrossRef]
- Li, X.F.; Li, Q.K.; Cheng, J.; Liu, L.; Yan, Q.; Wu, Y.; Zhang, X.H.; Wang, Z.Y.; Qiu, Q.; Luo, Y. Conversion of Dinitrogen to Ammonia by FeN3-Embedded Graphene. J. Am. Chem. Soc. 2016, 138, 8706. [Google Scholar] [CrossRef] [PubMed]
- Deringer, V.L.; Tchougréeff, A.L.; Dronskowski, R. Crystal Orbital Hamilton Population (COHP) Analysis As Projected from Plane-Wave Basis Sets. J. Phys. Chem. A 2011, 115, 5461–5466. [Google Scholar] [CrossRef] [PubMed]
- Dronskowski, R.; Bloechl, P.E. Crystal orbital Hamilton populations (COHP): Energy-resolved visualization of chemical bonding in solids based on density-functional calculations. J. Phys. Chem. B 1993, 97, 8617–8624. [Google Scholar] [CrossRef]
- Nelson, R.; Ertural, C.; George, J.; Deringer, V.; Dronskowski, R. LOBSTER: Local orbital projections, atomic charges, and chemical bonding analysis from Projector-Augmented- Wave-Based DFT. J. Comput. Chem. 2020, 41. [Google Scholar] [CrossRef] [PubMed]
- Maintz, S.; Deringer, V.L.; Tchougréeff, A.L.; Dronskowski, R. LOBSTER: A tool to extract chemical bonding from plane-wave based DFT. J. Comput. Chem. 2016, 37, 1030–1035. [Google Scholar] [CrossRef] [Green Version]
Preferential Adsorption Molecule | Stable Configuration | Initial Configuration | Bond | dH–O | dH–Pu | dO–Pu | θH–O–H | hH–S | hO–S | Eads |
---|---|---|---|---|---|---|---|---|---|---|
H2O | BH-S-H4O10 | B-P-v | H1–O1 H2–O2 | 0.993 0.976 | 2.916 | 2.391 | - | 2.169 | 0.965 | −9.731 |
BB-S-H4O5 | B-P-p | H1–O1 H2–O3 | 0.992 0.975 | 2.893 | 2.277 | - | 2.182 | 1.455 | −9.496 | |
HH-P-H1O9 | H-V | H1–O1 H2–O1 H2–O3 | 0.976 0.987 2.052 | 2.821 | 2.481 | 105.872 | 2.624 | 1.159 | −9.461 | |
BH-S-H2O8 | H-P-v | H1–O1 H2–O2 | 0.979 0.980 | 2.960 | 2.425 | - | 2.264 | 0.975 | −8.477 | |
HB-S-H2O8 | H-P-p | H1–O1 H2–O3 | 0.974 0.980 | 2.996 | 2.416 | - | 2.477 | 1.169 | −8.325 | |
HB-S-H2O7 | T-P-p | H1–O3 H2–O1 | 0.976 0.991 | 2.895 | 2.404 | - | 2.180 | 1.196 | −8.135 | |
O2 | B-S-H2O4 | H-D-v | H1–O1 H2–O2 H1–O3 H2–O3 | 1.866 1.954 0.991 0.986 | 2.807 | 2.082 | 100.035 | 2.531 | 2.082 | −8.740 |
T-S-H1O5 | B-U-v | H1–O1 H1–O3 H2–O3 | 1.944 0.989 0.975 | 2.728 | 2.199 | 106.259 | 2.780 | 1.681 | −8.727 | |
H-V-H0O4 | H-U-v | H1–O2 H2–O1 H1–O3 H2–O3 | 2.033 2.116 0.978 0.977 | - | 2.067 | 102.433 | 3.028 | 2.008 | −8.673 | |
B-V-H1O6 | B-D-v | H2–O1 H1–O3 H2–O3 | 2.155 0.974 0.986 | 2.947 | 2.325 | 108.902 | 2.763 | 1.553 | −5.431 | |
T-P-H2O5 | H-D-p | H2–O1 H1–O3 H2–O3 | 1.909 0.983 0.986 | 2.900 | 2.245 | 100.548 | 2.624 | 1.697 | −4.202 | |
B-V-H0O5 | T-D-p | H1–O3 H2– O3 | 0.980 0.979 | - | 2.194 | 108.788 | 2.717 | 1.505 | −3.772 |
Initial Configuration | Stable Configuration | H2O | O2 | Qtotal/e | Layers | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
QH1/e | QH2/e | QO1/e | QO2/e | QO3/e | Q1st/e | Q2nd/e | Q3rd/e | Q4th/e | |||
- | Free H2O and O2 | −0.623 | −0.623 | 1.246 | 0.025 | −0.025 | 0.000 | - | - | - | - |
- | Bare surface | - | - | - | - | - | - | 0.397 | 0.542 | 0.201 | −0.346 |
B-P-v | BH-S-H4O10 | −0.600 | −0.624 | 1.279 | 1.326 | 1.258 | 2.640 | 2.933 | 0.419 | 0.202 | −0.328 |
B-P-p | BB-S-H4O5 | −0.636 | −0.627 | 1.312 | 1.117 | 1.301 | 2.467 | 2.901 | 0.543 | 0.225 | −0.334 |
H-V | HH-P-H1O9 | −0.616 | −0.615 | 1.267 | 1.282 | 1.296 | 2.613 | 2.857 | 0.298 | 0.245 | −0.299 |
H-P-v | BH-S-H2O8 | −0.553 | −0.573 | 1.314 | 1.304 | 1.277 | 2.769 | 2.965 | 0.273 | 0.240 | −0.317 |
H-P-p | HB-S-H2O8 | −0.598 | −0.564 | 1.318 | 1.249 | 1.291 | 2.697 | 3.031 | 0.431 | 0.218 | −0.314 |
T-P-p | HB-S-H2O7 | −0.581 | −0.669 | 1.355 | 1.274 | 1.273 | 2.652 | 2.982 | 0.403 | 0.223 | −0.296 |
Initial Configuration | Stable Configuration | O2 | H2O | Qtotal/e | Layers | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
QO1/e | QO2/e | QO3/e | QH1/e | QH2/e | Q1st/e | Q2nd/e | Q3rd/e | Q4th/e | |||
- | Free H2O and O2 | 0.025 | −0.025 | 1.246 | −0.623 | −0.623 | 0.000 | - | - | - | - |
- | Bare surface | - | - | - | - | - | - | -0.397 | 0.542 | 0.201 | −0.346 |
H-D-v | B-S-H2O4 | 1.119 | 1.105 | 1.283 | −0.627 | −0.626 | 2.254 | −2.606 | 0.518 | 0.209 | −0.375 |
B-U-v | T-S-H1O5 | 1.101 | 1.107 | 1.282 | −0.631 | −0.628 | 2.231 | −2.598 | 0.483 | 0.224 | −0.340 |
H-U-v | H-V-H0O4 | 1.092 | 1.105 | 1.214 | −0.610 | −0.570 | 2.231 | −2.533 | 0.513 | 0.199 | −0.411 |
B-D-v | B-V-H1O6 | 1.123 | 1.095 | 1.323 | −0.652 | −0.642 | 2.247 | −2.653 | 0.550 | 0.153 | −0.297 |
H-D-p | T-P-H2O5 | 1.075 | 1.112 | 1.288 | −0.635 | −0.635 | 2.205 | −2.570 | 0.557 | 0.176 | −0.367 |
T-D-p | B-V-H0O5 | 1.091 | 1.091 | 1.341 | −0.643 | −0.634 | 2.246 | −2.678 | 0.665 | 0.073 | −0.307 |
Preferential Adsorption Molecule | Stable Configuration | Evacuum/eV | EFermi/eV | Ф/eV | ΔФ/eV |
---|---|---|---|---|---|
- | bare surface | 6.296 | 3.283 | 3.013 | - |
H2O | BH-S-H4O10 | 6.469 | 3.515 | 2.954 | −0.059 |
BB-S-H4O5 | 6.707 | 3.362 | 3.345 | 0.332 | |
HH-P-H1O9 | 6.505 | 3.514 | 2.991 | −0.022 | |
BH-S-H2O8 | 6.625 | 3.660 | 2.965 | −0.048 | |
HB-S-H2O8 | 6.575 | 3.617 | 2.958 | −0.055 | |
HB-S-H2O7 | 6.479 | 3.485 | 2.994 | −0.019 | |
O2 | B-S-H2O4 | 7.389 | 3.123 | 4.266 | 1.253 |
T-S-H1O5 | 6.887 | 3.297 | 3.590 | 0.577 | |
H-V-H0O4 | 8.583 | 2.806 | 5.777 | 2.764 | |
B-V-H1O6 | 6.420 | 3.484 | 2.936 | −0.077 | |
T-P-H2O5 | 7.205 | 3.193 | 4.012 | 0.999 | |
B-V-H0O5 | 6.433 | 3.496 | 2.937 | −0.076 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, G.; Zhao, Z.; Zhai, P.; Chen, X.; Li, Y. First-Principle Study of Co-Adsorption Behavior of H2O and O2 on δ-Pu (100) Surface. Coatings 2021, 11, 1098. https://doi.org/10.3390/coatings11091098
Wang G, Zhao Z, Zhai P, Chen X, Li Y. First-Principle Study of Co-Adsorption Behavior of H2O and O2 on δ-Pu (100) Surface. Coatings. 2021; 11(9):1098. https://doi.org/10.3390/coatings11091098
Chicago/Turabian StyleWang, Guoliang, Zhaoyang Zhao, Pengfei Zhai, Xudan Chen, and Yefei Li. 2021. "First-Principle Study of Co-Adsorption Behavior of H2O and O2 on δ-Pu (100) Surface" Coatings 11, no. 9: 1098. https://doi.org/10.3390/coatings11091098