Electrodeposition of Thick and Crack-Free Fe-Cr-Ni Coatings from a Cr (III) Electrolyte
Abstract
:1. Introduction
2. Materials and Methods
2.1. Substrate Preparation and Electrodeposition
2.2. Layer Characterization
3. Results and Discussion
3.1. Element Composition
3.2. Microstructure
3.3. Phase Analyses
3.4. Hardness and Wear Resistance
3.5. Corrosion Resistance of Coatings
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Regulation (EC) No 1907/2006 of the European Parliament and of the Council of 18 December 2006 Concerning the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH), Establishing a European Chemicals Agency, Amending Directive 1999/4. 2017, 10, 1–21. Available online: http://data.europa.eu/eli/reg/2006/1907/2021-10-01 (accessed on 4 November 2021).
- Simão, J.; Aspinwall, D.K. Hard chromium plating of EDT mill work rolls. J. Mater. Process. Technol. 1999, 92–93, 281–287. [Google Scholar] [CrossRef]
- Podgornik, B.; Massler, O.; Kafexhiu, F.; Sedlacek, M. Crack density and tribological performance of hard-chrome coatings. Tribol. Int. 2018, 121, 333–340. [Google Scholar] [CrossRef]
- Pfeiffer, W.; Koplin, C.; Reisacher, E.; Wenzel, J. Residual stresses and strength of hard chromium coatings. Mater. Sci. Forum 2011, 681, 133–138. [Google Scholar] [CrossRef]
- Bertero, E.; Manzano, C.V.; Pellicer, E.; Sort, J.; Ulfig, R.M.; Mischler, S.; Michler, J.; Philippe, L. “Green” Cr(III)-glycine electrolyte for the production of FeCrNi coatings: Electrodeposition mechanisms and role of by-products in terms of coating composition and microstructure. RSC Adv. 2019, 9, 25762–25775. [Google Scholar] [CrossRef] [Green Version]
- Bertero, E.; Manzano, C.V.; Bürki, G.; Philippe, L. Stainless steel-like FeCrNi nanostructures via electrodeposition into AAO templates using a mixed-solvent Cr(III)-based electrolyte. Mater. Des. 2020, 190, 108559. [Google Scholar] [CrossRef]
- Hasegawa, M.; Yoon, S.; Guillonneau, G.; Zhang, Y.; Frantz, C.; Niederberger, C.; Weidenkaff, A.; Michler, J.; Philippe, L. The electrodeposition of FeCrNi stainless steel: Microstructural changes induced by anode reactions. Phys. Chem. Chem. Phys. 2014, 16, 26375–26384. [Google Scholar] [CrossRef]
- Philippe, L.; Heiss, C.; Michler, J. Electroplating of stainless steel. Chem. Mater. 2008, 20, 3377–3384. [Google Scholar] [CrossRef]
- Kang, J.C.; Lalvani, S.B.; Melendres, C.A. Electrodeposition and characterization of amorphous Fe-Ni-Cr-based alloys. J. Appl. Electrochem. 1995, 25, 376–383. [Google Scholar] [CrossRef]
- Adelkhani, H.; Arshadi, M.R. Properties of Fe-Ni-Cr alloy coatings by using direct and pulse current electrodeposition. J. Alloys Compd. 2009, 476, 234–237. [Google Scholar] [CrossRef]
- Meinhold, V.; Höhlich, D.; Dittes, A.; Mehner, T.; Lampke, T. Electrodeposition of FeCrNi and FeCr alloys and influence of heat treatment on microstructure and composition. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1147, 012003. [Google Scholar] [CrossRef]
- Brittain, C.P.; Smith, G.C. A Preliminary Investigation of the formation of cracks in hard chromium electrodeposits and the evolution of hydrogen during deposition. Trans. IMF 1955, 33, 289–305. [Google Scholar] [CrossRef]
- Martyak, N.M.; McCaskie, J.E.; Voos, B.; Plieth, W. Microcracks in chromium electrodeposits. J. Mater. Sci. 1997, 32, 6069–6073. [Google Scholar] [CrossRef]
- Czerwinski, F.; Kedzierski, Z. On the mechanism of microcrack formation in nanocrystalline Fe-Ni electrodeposits. J. Mater. Sci. 1997, 32, 2957–2961. [Google Scholar] [CrossRef]
- Danilov, F.I.; Protsenko, V.S.; Butyrina, T.E.; Krasinskii, V.A.; Baskevich, A.S.; Kwon, S.C.; Lee, J.Y. Electrodeposition of nanocrystalline chromium coatings from cr(iii)-based electrolyte using pulsed current. Prot. Met. Phys. Chem. Surf. 2011, 47, 598–605. [Google Scholar] [CrossRef]
- El-Sharif, M.; McDougall, J.; Chisholm, C.U. Electrodeposition of thick chromium coatings from an environmentally acceptable chromium (III)-glycine complex. Trans. IMF 1999, 77, 139–144. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, Z.; Liang, B.; La, P. Effects of CeO2 on friction and wear characteristics of Fe-Ni-Cr alloy coatings. Tribol. Int. 2006, 39, 971–978. [Google Scholar] [CrossRef]
- Lin, K.L.; Hsu, C.J.; Hsu, I.M.; Chang, J.T. Electroplating of Ni-Cr on steel with pulse plating. J. Mater. Eng. Perform. 1992, 1, 359–361. [Google Scholar] [CrossRef]
- Gabe, D.R. The role of hydrogen in metal electrodeposition processes. J. Appl. Electrochem. 1997, 27, 908–915. [Google Scholar] [CrossRef]
- Leimbach, M.; Tschaar, C.; Schmidt, U.; Bund, A. Electrochemical characterization of chromium deposition from trivalent solutions for decorative applications by EQCM and near-surface pH measurements. Electrochim. Acta 2018, 270, 104–109. [Google Scholar] [CrossRef]
- Carlton, C.E.; Ferreira, P.J. What is behind the inverse Hall-Petch effect in nanocrystalline materials? Acta Mater. 2007, 55, 3749–3756. [Google Scholar] [CrossRef]
- Yousefi, E.; Irannejad, A.; Sharafi, S. Electrodeposition and characterization of nanocrystalline Fe−Ni−Cr alloy coatings synthesized via pulse current method. Trans. Nonferrous Met. Soc. China 2019, 29, 2591–2603. [Google Scholar] [CrossRef]
- Huang, C.A.; Li, K.C.; Lin, W.; Liao, M.C. The behavior of electroplated hard-chromium on Cr-Mo steel subject to long-term annealing at 250 °C. Mater. Sci. Eng. A 2005, 403, 222–226. [Google Scholar] [CrossRef]
- El-Sherik, A.; Erb, U.; Palumbo, G.; Aust, K. Deviations from hall-petch behaviour in as-prepared nanocrystalline nickel. Scr. Met. Mater. 1992, 27, 1185–1188. [Google Scholar] [CrossRef]
- Akram, W.; Mateen, A.; Qazi, I.; Hussain, A. Development and characterization of cost effective wear and corrosion resistant HVOF sprayed chromite coatings and hard chrome plating. In Proceedings of the 2019 16th International Bhurban Conference on Applied Sciences and Technology (IBCAST), Islamabad, Pakistan, 8–12 January 2019; pp. 66–73. [Google Scholar] [CrossRef]
- Bertero, E.; Hasegawa, M.; Staubli, S.; Pellicer, E.; Herrmann, I.K.; Sort, J.; Michler, J.; Philippe, L. Electrodeposition of amorphous Fe-Cr-Ni stainless steel alloy with high corrosion resistance, low cytotoxicity and soft magnetic properties. Surf. Coat. Technol. 2018, 349, 745–751. [Google Scholar] [CrossRef]
- Survilienė, S.; Nivinskienė, O.; Češunienė, A.; Selskis, A. Effect of Cr(III) solution chemistry on electrodeposition of chromium. J. Appl. Electrochem. 2006, 36, 649–654. [Google Scholar] [CrossRef]
- Haupt, S.; Strehblow, H.H. A combined surface analytical and electrochemical study of the formation of passive layers on Fe Cr alloys in 0.5 M H2SO4. Corros. Sci. 1995, 37, 43–54. [Google Scholar] [CrossRef]
Chemicals | Formula | Concentration | |
---|---|---|---|
(mol/L) | (g/L) | ||
Chromium(III) chlorid | CrCl3·6H2O | 0.40 | 106.58 |
Glycine | C2H5NO2 | 0.40 | 30.03 |
Iron(II) chlorid | FeCl2·4H2O | 0.03 | 5.96 |
Nickel(II) chlorid | NiCl2·6H2O | 0.20 | 33.28 |
Ammonium chlorid | NH4CL | 0.50 | 26.75 |
Boric acid | H3BO3 | 0.15 | 9.27 |
Sodium chloride | NaCl | 0.50 | 29.22 |
Parameters | Value |
---|---|
Current density (A/dm2) | 12 |
Effective coating time (min) | 120 |
Temperature (°C) | 23 |
Anode-cathode distance (mm) | 20 |
Area ratio anode-cathode | 6:1 |
Bath volume (mL) | 250 |
Bath movement (rpm) | 150 |
pH | 1 |
Samples | wCr (%) | wFe (%) | wNi (%) | wO (%) | wCl (%) | d (µm) |
---|---|---|---|---|---|---|
DC 1 | 24.4 ± 2.0 | 47.9 ± 1.3 | 15.5 ± 0.4 | 11.7 ± 2.5 | 0.6 ± 0.25 | 10.2 ± 1.2 |
DC 2 | 32.3 ± 0.5 | 42.8 ± 1.6 | 13.5 ± 1.3 | 11.1 ± 0.8 | 0.4 ± 0.05 | 15.4 ± 2.3 |
DC 3 | 49.2 ± 4.7 | 31.1 ± 4.1 | 7.3 ± 1.2 | 12.0 ± 0.6 | 0.5 ± 0.03 | 30.1 ± 4.9 |
Stepped DC 1 | 26.4 ± 5.4 | 49.0 ± 4.4 | 12.1 ± 1.4 | 11.9 ± 0.6 | 0.5 ± 0.1 | 22.5 ± 1.4 |
Stepped DC 2 | 25.7 ± 1.3 | 46.1 ± 2.1 | 15.8 ± 0.9 | 11.9 ± 0.5 | 0.6 ± 0.1 | 14.1 ± 2.1 |
Stepped DC 3 | 27.9 ± 0.6 | 45.2 ± 2.5 | 14.7 ± 1.8 | 11.6 ± 1.1 | 0.5 ± 0.1 | 16.2 ± 1.9 |
PC 1 | 15.1 ± 2.1 | 58.6 ± 2.4 | 17.9 ± 0.8 | 7.9 ± 0.8 | 0.6 ± 0.1 | 15.3 ± 1.2 |
PC 2 | 11.8 ± 0.9 | 61.2 ± 2.2 | 19.1 ± 1.5 | 7.2 ± 0.3 | 0.6 ± 0.1 | 12.5 ± 1.1 |
PC 3 | 15.5 ± 0.6 | 58.6 ± 2.0 | 16.5 ± 0.5 | 8.5 ± 1.8 | 0.9 ± 0.1 | 6.7 ± 1.2 |
Sample | DC 2 | Stepped DC 2 | PC 2 |
---|---|---|---|
Lc (N) | 19 ± 4 | 21 ± 4 | 21 ± 1 |
Sample | DC 2 | Stepped DC 2 | PC 2 | Hard Chrome | Stainless Steel |
---|---|---|---|---|---|
icorr (mA/dm2) | 0.147 | 0.118 | 0.249 | 0.006 | 0.002 |
Ecorr (mV) | 54.5 | −74.2 | −249.1 | −231.1 | 303.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meinhold, V.; Höhlich, D.; Mehner, T.; Lampke, T. Electrodeposition of Thick and Crack-Free Fe-Cr-Ni Coatings from a Cr (III) Electrolyte. Coatings 2022, 12, 56. https://doi.org/10.3390/coatings12010056
Meinhold V, Höhlich D, Mehner T, Lampke T. Electrodeposition of Thick and Crack-Free Fe-Cr-Ni Coatings from a Cr (III) Electrolyte. Coatings. 2022; 12(1):56. https://doi.org/10.3390/coatings12010056
Chicago/Turabian StyleMeinhold, Vanessa, Dominik Höhlich, Thomas Mehner, and Thomas Lampke. 2022. "Electrodeposition of Thick and Crack-Free Fe-Cr-Ni Coatings from a Cr (III) Electrolyte" Coatings 12, no. 1: 56. https://doi.org/10.3390/coatings12010056
APA StyleMeinhold, V., Höhlich, D., Mehner, T., & Lampke, T. (2022). Electrodeposition of Thick and Crack-Free Fe-Cr-Ni Coatings from a Cr (III) Electrolyte. Coatings, 12(1), 56. https://doi.org/10.3390/coatings12010056