Photocatalytic Performance of ZnO/Ag(NPs) Nanocomposite Thin Films under Natural Conditions
Abstract
:1. Introduction
2. Experimental
2.1. Elaboration by Sol–Gel Coupled with Spin-Coating
- -
- Deposition of 4 successive layers of ZnO/Ag(NPs) nanocomposite by spin-coating with a rotation speed equal to 2500 rpm, each one during 20 s.
- -
- Heat treatment of each deposited layer at 300 °C for 10 min to evaporate the solvent and solution residues.
- -
- Heat treatment of the final nanocomposite film at 550 °C for 1 h to improve its crystalline structure.
2.2. Characterization Techniques
3. Results and Discussion
3.1. Ag NPs in the Precursor Solution
- (i)
- Ag NPs, once added and dispersed in the ZnO precursor solution, do not dissolve in solution.
- (ii)
- They remain present in metallic form in the solution and no doping effect of ZnO by silver is generated.
3.2. Ag NPs in the Nanocomposite Film
3.3. Effects of Ag NPs Content on Surface Wettability
3.4. Effects of Ag NPs Ag Content on the Optical Properties of the Nanocomposite Film
3.5. Effects of Ag NPs Ag Content on the Photocatalytic Performance
3.6. Photocatalytic Performance under Natural Conditions
- -
- In the case of a dye solution with deionized water (Figure 17a), both photocatalysts show good stability, in terms of photodegradation efficiency, during the 5 cycles of 4 h of use. The ZnO/Ag(10% NPs) photocatalyst reaches an efficiency of 100% from the 2nd cycle. The efficiency of pure ZnO photocatalyst does not reach 80%.
- -
- In the case of a dye solution prepared with natural water, the efficiency of ZnO/Ag (10% NPs) reaches 100% as early as the 1st cycle. This efficiency decreases by 15% after 5 cycles. With pure ZnO, the initial photocatalytic efficiency is close to 80% in the 1st cycle and decreases to 60% after 5 cycles.
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ajala, O.J.; Tijani, J.O.; Salau, R.B.; Abdulkareem, A.S.; Aremu, O.S. A review of emerging micro-pollutants in hospital wastewater: Environmental fate and remediation options. Results Eng. 2022, 16, 100671. [Google Scholar] [CrossRef]
- Saad Algarni, T.; Abduh, N.A.Y.; Al Kahtani, A.; Aouissi, A. Photocatalytic degradation of some dyes under solar light irradiation using ZnO nanoparticles synthesized from Rosmarinus officinalis extract. Green Chem. Lett. Rev. 2022, 15, 460–473. [Google Scholar] [CrossRef]
- Khiari, M.; Gilliot, M.; Lejeune, M.; Lazar, F.; Hadjadj, A. Preparation of Very Thin Zinc Oxide Films by Liquid Deposition Process: Review of Key Processing Parameters. Coatings 2022, 12, 65. [Google Scholar] [CrossRef]
- Šuligoj, A.; Cerc Korošec, R.; Žerjav, G.; Novak Tušar, N.; Lavrenčič Štangar, U. Solar-Driven Photocatalytic Films: Synthesis Approaches, Factors Affecting Environmental Activity, and Characterization Featuresy. Top. Curr. Chem. 2022, 380, 51. [Google Scholar] [CrossRef]
- Sanakousara, F.M.; Vidyasagara, C.C.; Jiménez-Pérezb, V.M.; Prakashc, K. Recent progress on visible-light-driven metal and non-metal doped ZnO nanostructures for photocatalytic degradation of organic pollutants. Mater. Sci. Semicond. Process. 2022, 140, 106390. [Google Scholar] [CrossRef]
- Qumar, U.; Hassan, J.Z.; Bhatti, R.A.; Raza, A.; Nazir, G.; Nabgan, W.; Ikram, M. Photocatalysis vs adsorption by metal oxide nanoparticles. J. Mater. Sci. Technol. 2022, 131, 122–166. [Google Scholar] [CrossRef]
- Commission Regulation (EU) 2022/63 of 14 January 2022 Amending Annexes II and III to Regulation (EC) No 1333/2008 of the European Parliament and of the Council as Regards the Food Additive Titanium Dioxide (E 171) (Text with EEA Relevance). Available online: http://data.europa.eu/eli/reg/2022/63/oj (accessed on 9 November 2022).
- Ikram, M.; Rashid, M.; Haider, A.; Naz, S.; Haider, J.; Raza, A.; Ansar, M.T.; Uddin, M.K.; Ali, N.M.; Ahmed, S.S.; et al. A review of photocatalytic characterization, and environmental cleaning, of metal oxide nanostructured materials. Sustain. Mater. Technol. 2021, 30, e00343. [Google Scholar] [CrossRef]
- Ivanuša, M.; Kumer, B.; Petrovčič, E.; Štular, D.; Zorc, M.; Jerman, I.; Gorjanc, M.; Tomšič, B.; Simončič, B. Eco-Friendly Approach to Produce Durable Multifunctional Cotton Fibres Using TiO2, ZnO and Ag NPs. Nanomaterials 2022, 12, 3140. [Google Scholar] [CrossRef]
- Beura, R.; Pachaiappan, R.; Paramasivam, T. Photocatalytic degradation studies of organic dyes over novel Ag-loaded ZnO-graphene hybrid nanocomposites. J. Phys. Chem. Solids 2021, 148, 109689. [Google Scholar] [CrossRef]
- Chen, X.; Zhu, L.; Ma, Z.; Wang, M.; Zhao, R.; Zou, Y.; Fan, Y. Ag Nanoparticles Decorated ZnO Nanorods as Multifunctional SERS Substrates for Ultrasensitive Detection and Catalytic Degradation of Rhodamine B. Nanomaterials 2022, 12, 2394. [Google Scholar] [CrossRef]
- Phuruangrat, A.; Siri, S.; Wadbua, P.; Thongtem, S.; Thongtem, T. Microwave-assisted synthesis, photocatalysis and antibacterial activity of Ag nanoparticles supported on ZnO flowers. J. Phys. Chem. Solids 2019, 126, 170–177. [Google Scholar] [CrossRef]
- Babu, A.T.; Antony, R. Green synthesis of silver doped nano metal oxides of zinc & copper for antibacterial properties, adsorption, catalytic hydrogenation & photodegradation of aromatics. J. Environ. Chem. Eng. 2019, 7, 102840. [Google Scholar]
- Ata, S.; Shaheen, I.; Ghafoor, S.; Sultan, M.; Majid, F.; Bibi, I.; Iqbal, M. Graphene and silver decorated ZnO composite synthesis, characterization and photocatalytic activity evaluation. Diam. Relat. Mater. 2018, 90, 26–31. [Google Scholar] [CrossRef]
- Elsellami, L.; Djeridi, W. Charge transfer modulation (e−/h+) between TiO2, ZnO, and Ag for a superior photocatalytic performance. J. Mat. Res. 2022, 37, 897–908. [Google Scholar] [CrossRef]
- Munawar, K.; Mansoor, M.A.; Olmstead, M.M.; Zaharinie, T.; Mohd Zubir, M.N.; Haniffa, M.; Basirun, W.J.; Mazhar, M. Fabrication of Ag-ZnO composite thin films for plasmonic enhanced water splitting. Mater. Chem. Phys. 2020, 255, 123220. [Google Scholar] [CrossRef]
- Vallejo, W.; Cantillo, A.; Díaz-Uribe, C. Methylene blue photodegradation under visible irradiation on Ag-doped ZnO thin films. Int. J. Photoenergy 2020, 2020, 1627498. [Google Scholar] [CrossRef] [Green Version]
- Abdelsamad, A.M.; Gad-Allah, T.A.; Mahmoud, F.A.; Badawy, M.I. Enhanced photocatalytic degradation of textile wastewater using Ag/ZnO thin films. J. Water Process Eng. 2018, 25, 88–95. [Google Scholar] [CrossRef]
- Badawy, M.I.; Mahmoud, F.A.; Abdel-Khalek, A.A.; Gad-Allah, T.A.; Abdel Samad, A.A. Solar photocatalytic activity of sol–gel prepared Ag-doped ZnO thin films. Desalination Water Treat. 2014, 52, 2601–2608. [Google Scholar] [CrossRef]
- Thongsuriwong, K.; Amornpitoksuk, P.; Suwanboon, S. Photocatalytic and antibacterial activities of Ag-doped ZnO thin films prepared by a sol–gel dip-coating method. J. Sol-Gel Sci. Technol. 2012, 62, 304–312. [Google Scholar] [CrossRef]
- Podasca, V.E.; Damaceanu, M.D. ZnO-Ag based polymer composites as photocatalysts for highly efficient visible-light degradation of Methyl Orange. J. Photochem. Photobiol. A Chem. 2021, 406, 113003. [Google Scholar] [CrossRef]
- Pathak, T.K.; Kroon, R.E.; Swart, H.C. Photocatalytic and biological applications of Ag and Au doped ZnO nanomaterial synthesized by combustion. Vacuum 2018, 157, 508–513. [Google Scholar] [CrossRef]
- Stanley, R.; Jebasingh, J.A.; Manisha Vidyavathy, S.; Kingston Stanley, P.; Ponmani, P.; Shekinah, M.E.; Vasanthi, J. Excellent Photocatalytic degradation of Methylene Blue, Rhodamine B and Methyl Orange dyes by Ag-ZnO nanocomposite under natural sunlight irradiation. Optik 2021, 231, 166518. [Google Scholar]
- Hunge, Y.M.; Yadav, A.A.; Kang, S.-W.; Kim, H. Facile synthesis of multitasking composite of Silver nanoparticle with Zinc oxide for 4-nitrophenol reduction, photocatalytic hydrogen production, and 4-chlorophenol degradation. J. Alloys Compd. 2022, 928, 167133. [Google Scholar] [CrossRef]
- Khiari, M.; Gilliot, M.; Lejeune, M.; Lazar, F.; Hadjadj, A. Effects of ag nanoparticles on zinc oxide photocatalytic performance. Coatings 2021, 11, 400. [Google Scholar] [CrossRef]
- Gilliot, M.; Hadjadj, A.; Martin, J. Luminescence and ellipsometry investigations of annealing effects on nano-granular ZnO. J. Lumin. 2017, 192, 25–32. [Google Scholar] [CrossRef]
- Gilliot, M. Inversion of ellipsometry data using constrained spline analysis. Appl. Opt. 2017, 56, 1173. [Google Scholar] [CrossRef]
- Gilliot, M.; Hadjadj, A.; Stchakovsky, M. Spectroscopic ellipsometry data inversion using constrained splines and application to characterization of ZnO with various morphologies. Appl. Surf. Sci. 2017, 421, 453–459. [Google Scholar] [CrossRef]
- Khiari, M.; Gilliot, M.; Lejeune, M.; Lazar, F.; Hadjadj, A. ZnO/Ag nanocomposite thin films: A promising approach for dye degradation. Asp. Min. Miner. Sci. 2021, 7, 833–835. [Google Scholar]
- Jackson, P.; Robinson, K.; Puxty, G.; Attalla, M. In situ Fourier Transform-Infrared (FT-IR) analysis of carbon dioxide absorption and desorption in amine solutions. Energy Procedia 2009, 1, 985–994. [Google Scholar] [CrossRef] [Green Version]
- Znaidi, L.; Illia, G.J.A.A.; Guennic, R.L.; Sanchez, C.; Kanaev, A. Elaboration of ZnO thin films with preferential orientation by a soft chemistry route. J. Sol-Gel Sci. Technol. 2003, 26, 817–821. [Google Scholar] [CrossRef]
- Khan, Z.R.; Khan, M.S.; Zulfequar, M.; Khan, M.S. Optical and structural properties of ZnO thin films fabricated by sol-gel method. Mater. Sci. Appl. 2011, 2, 340–345. [Google Scholar] [CrossRef] [Green Version]
- Jnido, G.; Ohms, G.; Viöl, W. Deposition of Zinc Oxide Coatings on Wood Surfaces Using the Solution Precursor Plasma Spraying Process. Coatings 2021, 11, 183. [Google Scholar] [CrossRef]
- Nandi, S.K.; Chakraborty, S.; Bera, M.K.; Maiti, C.K. Structural and optical properties of ZnO films grown on silicon and their applications in MOS devices in conjunction with ZrO2 as a gate dielectric. Bull. Mater. Sci. 2007, 30, 247–254. [Google Scholar] [CrossRef]
- Oje, A.I.; Ogwu, A.A.; Mirzaeian, M.; Tsendzughul, N. Electrochemical energy storage of silver and silver oxide thin films in an aqueous NaCl electrolyte. J. Electroanal. Chem. 2018, 829, 59–68. [Google Scholar] [CrossRef] [Green Version]
- Yahia, S.B.; Znaidi, L.; Kanaev, A.; Petitet, J. PRaman study of oriented ZnO thin films deposited by sol–gel method. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2008, 71, 1234–1238. [Google Scholar] [CrossRef]
- Arguello, C.A.; Rousseau, D.L.; Porto, S.D.S. First-order Raman effect in wurtzite-type crystals. Phys. Rev. 1969, 181, 1351–1363. [Google Scholar] [CrossRef]
- Wang, X.B.; Song, C.; Geng, K.W.; Zeng, F.; Pan, F. Luminescence and Raman scattering properties of Ag-doped ZnO films. J. Phys. D Appl. Phys. 2006, 39, 4992–4996. [Google Scholar] [CrossRef]
- Bian, H.Q.; Ma, S.Y.; Zhang, Z.M.; Gao, J.M.; Zhu, H.B. Microstructure and Raman scattering of Ag-doping ZnO films deposited on buffer layers. J. Cryst. Growth 2014, 394, 132–136. [Google Scholar] [CrossRef]
- Ramirez, D.; Jaramillo, F. Facile one-pot synthesis of uniform silver nanoparticles and growth mechanism. Dyna 2016, 83, 165–170. [Google Scholar] [CrossRef]
- Akbari-Sharbaf, A.; Ezugwu, S.; Ahmed, M.S.; Cottam, M.G.; Fanchini, G. Doping graphene thin films with metallic nanoparticles: Experiment and theory. Carbon 2015, 95, 199–207. [Google Scholar] [CrossRef]
- Kumar, V.S.; Kanjilal, D. Influence of post-deposition annealing on structural, optical and transport properties of nanocomposite ZnO-Ag thin films. Mater. Sci. Semicond. Process. 2018, 81, 22–29. [Google Scholar] [CrossRef]
- Lee, K.C.; Lin, S.J.; Lin, C.H.; Tsai, C.S.; Lu, Y.J. Size effect of Ag nanoparticles on surface plasmon resonance. Surf. Coat. Technol. 2008, 202, 5339–5342. [Google Scholar] [CrossRef]
- Borges, J.; Buljan, M.; Sancho-Parramon, J.; Bogdanovic-Radovic, I.; Siketic, Z.; Scherer, T.; Kübel, C.; Bernstorff, S.; Cavaleiro, A.; Vaz, F.; et al. Evolution of the surface plasmon resonance of Au:TiO2 nanocomposite thin films with annealing temperature. J. Nanoparticle Res. 2014, 16, 2790. [Google Scholar] [CrossRef]
- Domingues, R.P.; Rodrigues, M.S.; Lopes, C.; Pedrosa, P.; Alves, E.; Barradas, N.P.; Borges, J.; Vaz, F. Thin films composed of metal nanoparticles (Au, Ag, Cu) dispersed in AlN: The influence of composition and thermal annealing on the structure and plasmonic response. Thin Solid Film. 2019, 676, 12–25. [Google Scholar] [CrossRef]
- Huang, L.; Lau, S.P.; Yang, H.Y.; Leong, E.S.P.; Yu, S.F.; Prawer, S. Stable superhydrophobic surface via carbon nanotubes coated with a ZnO thin film. J. Phys. Chem. B 2005, 109, 7746–7748. [Google Scholar] [CrossRef]
- Ilkhechi, N.N.; Ghobadi, N.; Yahyavi, F. Enhanced optical and hydrophilic properties of V and La co-doped ZnO thin films. Opt. Quantum Electron. 2017, 49, 39. [Google Scholar] [CrossRef]
- Tarwal, N.L.; Patil, P.S. Superhydrophobic and transparent ZnO thin films synthesized by spray pyrolysis technique. Appl. Surf. Sci. 2010, 256, 7451–7456. [Google Scholar] [CrossRef]
- Sun, R.D.; Nakajima, A.; Fujishima, A.; Watanabe, T.; Hashimoto, K. Photoinduced surface wettability conversion of ZnO and TiO2 thin films. J. Phys. Chem. B 2001, 105, 1984–1990. [Google Scholar] [CrossRef]
- Lejeune, M.; Lacroix, L.M.; Brétagnol, F.; Valsesia, A.; Colpo, P.; Rossi, F. Plasma-based processes for surface wettability modification. Langmuir 2006, 22, 3057–3061. [Google Scholar] [CrossRef]
- Singh, S. Natural sunlight driven photocatalytic performance of Ag/ZnO nanocrystals. Mater. Today Commun. 2022, 33, 104438. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, Y.J.; Meng, J.H.; Chen, S.; Panneerselvam, R.; Li, C.Y.; Jamali, S.B.; Li, X.; Yang, Z.L.; Li, J.F.; et al. A facile method for the synthesis of large-size Ag nanoparticles as efficient SERS substrates. J. Raman Spectrosc. 2016, 47, 662–667. [Google Scholar] [CrossRef]
- Tauc, J.; Grigorovici, R.; Vancu, A. Optical Properties and Electronic Structure of Amorphous Germanium. Phys. Status Solidi (B) 1966, 15, 627–637. [Google Scholar] [CrossRef]
- Shinde, S.G.; Patil, M.P.; Kim, G.D.; Shrivastava, V.S. Multi-doped ZnO photocatalyst for solar induced degradation of indigo carmine dye and as an antimicrobial agent. J. Inorg. Organomet. Polym. Mater. 2020, 30, 1141–1152. [Google Scholar] [CrossRef]
- Labhane, P.; Sonawane, S.; Patil, S.; Huse, V. Influence of Mg doping on ZnO nanoparticles decorated on graphene oxide (GO) crumpled paper like sheet and its high photo catalytic performance under sunlight. J. Phys. Chem. Solids 2018, 114, 71–82. [Google Scholar] [CrossRef]
- Abdel-Aziz, R.; Ahmed, M.A.; Abdel-Messih, M.F. A novel UV and visible light driven photocatalyst AgIO4/ZnO nanoparticles with highly enhanced photocatalytic performance for removal of rhodamine B and indigo carmine dyes. J. Photochem. Photobiol. A Chem. 2020, 389, 112245. [Google Scholar] [CrossRef]
- Namratha, K.; Byrappa, K.; Byrappa, S.; Venkateswarlu, P.; Rajasekhar, D.; Deepthi, B.K. Hydrothermal fabrication of selectively doped organic assisted advanced ZnO nanomaterial for solar driven photocatalysis. J. Environ. Sci. 2015, 34, 248–255. [Google Scholar] [CrossRef]
Photocatalyst | pH | IC Solution | Light Source | Rate Constant | Efficiency | Stability | Reference |
---|---|---|---|---|---|---|---|
10–25 nm 1% Ni, C, N, S multi-doped nanospheres ZnO | 3–11 | 5–15 (mg/L) | Sunlight | 1.38–2.83 (10−2 min−1) | - | −6% after 4 cycles | Shinde et al. [54] |
10–20 nm Mg doped ZnO NPs on graphene oxide | - | 20 (mg/L) | Sunlight | 4.97 (10−2 min−1) | 97% after 60 min | −10% after 4 cycles | Labhane et al. [55] |
30–45 nm AgIO4/ZnO NPs | 7–10 | 23 (mg/L) | Sunlight | - | 84% after 110 min | −18% after 5 cycles | Abdelaziz et al. [56] |
50–120 nm (Ag+ + Pd3+) doped ZnO NPs | - | 8–40 (mg/L) | Sunlight | - | 58–77%after 180 min | - | Namratha et al. [57] |
ted100 nm ZnO/Ag(10% NPs) thin film | 7.4 | 6.6 (mg/L) (deionized water) | Sunlight | 1.5 (10−2min−1) | 97% after 240 min | −1% after 5 cycles | This work |
7.8 | 6.6 (mg/L) (Somme water) | Sunlight | 2.4 (10−2min−1) | 100% after 240 min | −15% after 5 cycles | This work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khiari, M.; Lejeune, M.; Gilliot, M.; Lazar, F.; Hadjadj, A. Photocatalytic Performance of ZnO/Ag(NPs) Nanocomposite Thin Films under Natural Conditions. Coatings 2022, 12, 1782. https://doi.org/10.3390/coatings12111782
Khiari M, Lejeune M, Gilliot M, Lazar F, Hadjadj A. Photocatalytic Performance of ZnO/Ag(NPs) Nanocomposite Thin Films under Natural Conditions. Coatings. 2022; 12(11):1782. https://doi.org/10.3390/coatings12111782
Chicago/Turabian StyleKhiari, Mouna, Michaël Lejeune, Mickaël Gilliot, Florica Lazar, and Aomar Hadjadj. 2022. "Photocatalytic Performance of ZnO/Ag(NPs) Nanocomposite Thin Films under Natural Conditions" Coatings 12, no. 11: 1782. https://doi.org/10.3390/coatings12111782
APA StyleKhiari, M., Lejeune, M., Gilliot, M., Lazar, F., & Hadjadj, A. (2022). Photocatalytic Performance of ZnO/Ag(NPs) Nanocomposite Thin Films under Natural Conditions. Coatings, 12(11), 1782. https://doi.org/10.3390/coatings12111782