Recent Advancements in Biological Microelectromechanical Systems (BioMEMS) and Biomimetic Coatings
Conflicts of Interest
References
- Jivani, R.R.; Lakhtaria, G.J.; Patadiya, D.D.; Patel, L.D.; Jivani, N.P.; Jhala, B.P. Retraction notice to “Biomedical microelectromechanical systems (BioMEMS): Revolution in drug delivery and analytical techniques” [Saudi Pharm. J. 2016, 24, 1–20]. Saudi Pharm. J. SPJ 2019, 27, 453. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Gómez-Sjöberg, R.; Bashir, R. BioMEMS for Cellular Manipulation and Analysis. In BioMEMS and Biomedical Nanotechnology; Ferrari, M., Bashir, R., Wereley, S., Eds.; Springer: Boston, MA, USA, 2007; Volume 4, pp. 187–203. [Google Scholar] [CrossRef]
- Currey, J.D. Bones: Structure and Mechanics; Princeton University Press: Princeton, NJ, USA, 2006. [Google Scholar]
- Vincent, J. Structural Biomaterials in Structural Biomaterials; Princeton University Press: Princeton, NJ, USA, 2012. [Google Scholar]
- Thompson, D.W.; D’Arcy, W.T. On Growth and Form; Cambridge University Press: Cambridge, UK, 1942; Volume 2. [Google Scholar]
- Meyers, M.A.; Chen, P.-Y.; Lin, A.Y.-M.; Seki, Y. Biological materials: Structure and mechanical properties. Prog. Mater. Sci. 2008, 53, 1–206. [Google Scholar] [CrossRef] [Green Version]
- Hosseini, S.; Espinoza-Hernandez, M.; Garcia-Ramirez, R.; Cerda-Kipper, A.S.; Reveles-Huizar, S.; Acosta-Soto, L. BioMEMS: Biosensing Applications; Springer Nature: Mexico, 2019; ISBN 978-981-15-6382-9. [Google Scholar] [CrossRef]
- Gray, B.L. Welcome and Introduction for Microfluidics, BioMEMS, and Medical Microsystems on demand and invite to March 2, 2022 Panel Discussion 8AM PST. In Microfluidics, BioMEMS, and Medical Microsystems XX; SPIE: Bellingham, WA, USA, 2022; p. PC1195501. [Google Scholar]
- Folch, A. Introduction to BioMEMS; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar]
- Carter, S.B. Haptotactic islands: A method of confining single cells to study individual cell reactions and clone formation. Exp. Cell Res. 1967, 48, 189–193. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Ramirez, R.; Hosseini, S. History of bio-microelectromechanical systems (BioMEMS). In BioMEMS; Springer: Berlin/Heidelberg, Germany, 2021; pp. 1–20. [Google Scholar]
- Grayson, A.C.R.; Shawgo, R.S.; Johnson, A.M.; Flynn, N.T.; Li, Y.; Cima, M.J.; Langer, R. A BioMEMS review: MEMS technology for physiologically integrated devices. Proc. IEEE 2004, 92, 6–21. [Google Scholar] [CrossRef]
- Nuxoll, E.E.; Siegel, R.A. BioMEMS devices for drug delivery. IEEE Eng. Med. Biol. Mag. 2009, 28, 31–39. [Google Scholar] [CrossRef] [PubMed]
- Park, J.B. Structure-Property Relationships of Biological Materials. In Biomaterials Science and Engineering; Springer: Boston, MA, USA, 1984; pp. 119–169. [Google Scholar]
- Cooley, P.; Wallace, D.; Antohe, B. Applicatons of Ink-Jet Printing Technology to BioMEMS and Microfluidic Systems. JALA J. Assoc. Lab. Autom. 2002, 7, 33–39. [Google Scholar] [CrossRef] [Green Version]
- Menon, K.; Joy, R.A.; Sood, N.; Mittal, R.K. The Applications of BioMEMS in Diagnosis, Cell Biology, and Therapy: A Review. Bionanoscience 2013, 3, 356–366. [Google Scholar] [CrossRef]
- Qin, Z.; Dimas, L.; Adler, D.; Bratzel, G.; Buehler, M.J. Biological materials by design. J. Phys. Condens. Matter 2014, 26, 073101. [Google Scholar] [CrossRef] [PubMed]
- Mázl, C.E.; Rypáček, F. 4-Biomimetic coatings for biomaterial surfaces. In Biomimetic Biomaterials; Series in Biomaterials; Woodhead Publishing: Shaston, UK, 2013; pp. 91–126. [Google Scholar]
- Koju, N.; Sikder, P.; Ren, Y.; Zhou, H.; Bhaduri, S.B. Biomimetic coating technology for orthopedic implants. Curr. Opin. Chem. Eng. 2017, 15, 49–55. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Tian, J.; Zhong, J.; Shi, X. Thin nacre-biomimetic coating with super-anticorrosion performance. ACS Nano 2018, 12, 10189–10200. [Google Scholar] [CrossRef] [PubMed]
- Zarzeczny, D. Selection of metals in biomems applications. In Photonics Applications in Astronomy, Communications, Industry, and High-Energy Physics Experiments; SPIE: Bellingham, WA, USA, 2019; pp. 802–807. [Google Scholar]
- Bartsch, H.; Peipmann, R.; Himmerlich, M.; Frant, M.; Rothe, H.; Liefeith, K.; Witte, H. Surface properties and biocompatibility of thick film materials used in ceramic bioreactors. Materialia 2019, 5, 100213. [Google Scholar] [CrossRef]
- Wan, C.-F.; Chen, C.-S.; Hwang, K.-C.; Lai, Y.-H.; Luo, J.-Y.; Liu, P.-C.; Fan, L.-S. Development and automation of microelectromechanical systems-based biochip platform for protein assay. Sens. Actuators B Chem. 2014, 193, 53–61. [Google Scholar] [CrossRef]
- Jáuregui, A.L.; Siller, H.R.; Rodríguez, C.A.; Elías-Zúñiga, A. Evaluation of micromechanical manufacturing processes for microfluidic devices. Int. J. Adv. Manuf. Technol. 2010, 48, 963–972. [Google Scholar] [CrossRef]
- Chiang, C.-C.; Immanuel, P.N.; Chiu, Y.-H.; Huang, S.-J. Heterogeneous Bonding of PMMA and Double-Sided Polished Silicon Wafers through H2O Plasma Treatment for Microfluidic Devices. Coatings 2021, 11, 580. [Google Scholar] [CrossRef]
- Su, W.; Qiu, J.; Mei, Y.; Zhang, X.-E.; He, Y.; Li, F. A microfluidic cell chip for virus isolation via rapid screening for permissive cells. Virol. Sin. 2022, 37, 547–557. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.Q.; Luo, J.; Flewitt, A.; Milne, W. Smart microgrippers for bioMEMS applications. In MEMS for Biomedical Applications; Elsevier: Amsterdam, The Netherlands, 2012; pp. 291–336. [Google Scholar]
- Feng, B.; Wang, H.; Wang, D.; Yu, H.; Chu, Y.; Fang, H.-T. Fabrication of mesoporous metal oxide coated-nanocarbon hybrid materials via a polyol-mediated self-assembly process. Nanoscale 2014, 6, 14371–14379. [Google Scholar] [CrossRef] [PubMed]
- Cai, P.; Zhang, X.; Wang, M.; Wu, Y.-L.; Chen, X. Combinatorial nano–bio interfaces. ACS Nano 2018, 12, 5078–5084. [Google Scholar] [CrossRef] [PubMed]
- Karunakaran, C.; Bhargava, K.; Benjamin, R. Biosensors and Bioelectronics; Elsevier: Amsterdam, The Netherlands, 2015. [Google Scholar]
- Madalosso, H.B.; Machado, R.; Hotza, D.; Marangoni, C. Membrane Surface Modification by Electrospinning, Coating, and Plasma for Membrane Distillation Applications: A State-of-the-Art Review. Adv. Eng. Mater. 2021, 23, 2001456. [Google Scholar] [CrossRef]
- Ehlbeck, J.; Schnabel, U.; Andrasch, M.; Stachowiak, J.; Stolz, N.; Fröhling, A.; Schlüter, O.; Weltmann, K.D. Plasma treatment of food. Contrib. Plasma Phys. 2015, 55, 753–757. [Google Scholar] [CrossRef]
- Miller, V.; Lin, A.; Fridman, A. Why target immune cells for plasma treatment of cancer. Plasma Chem. Plasma Process. 2016, 36, 259–268. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, S.-J.; Lin, M.-T.; Chiang, C.-C.; Arun Dwivedi, K.; Abbas, A. Recent Advancements in Biological Microelectromechanical Systems (BioMEMS) and Biomimetic Coatings. Coatings 2022, 12, 1800. https://doi.org/10.3390/coatings12121800
Huang S-J, Lin M-T, Chiang C-C, Arun Dwivedi K, Abbas A. Recent Advancements in Biological Microelectromechanical Systems (BioMEMS) and Biomimetic Coatings. Coatings. 2022; 12(12):1800. https://doi.org/10.3390/coatings12121800
Chicago/Turabian StyleHuang, Song-Jeng, Ming-Tzer Lin, Chao-Ching Chiang, Kavya Arun Dwivedi, and Aqeel Abbas. 2022. "Recent Advancements in Biological Microelectromechanical Systems (BioMEMS) and Biomimetic Coatings" Coatings 12, no. 12: 1800. https://doi.org/10.3390/coatings12121800
APA StyleHuang, S. -J., Lin, M. -T., Chiang, C. -C., Arun Dwivedi, K., & Abbas, A. (2022). Recent Advancements in Biological Microelectromechanical Systems (BioMEMS) and Biomimetic Coatings. Coatings, 12(12), 1800. https://doi.org/10.3390/coatings12121800