Microstructural Evaluation of Graphene-Reinforced Nickel Matrix Ni-P-Gr Coating on Ti-6Al-4V Alloy by the Electroless Coating Method
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
- The Gr-Ni-P coating was successful. The microstructure of titanium alloy turned into a nodular structure. In addition, a 12.47 µm coating thickness was achieved on titanium alloy substrates.
- The crystal structure of the Ti-6Al-4V material turned into an amorphous structure with the composite coating process.
- The heat treatment applied to the composite coating caused the phase transformation and made the crystal structure more stable.
- The heat treatment had a positive effect on the wear resistance in both coated and uncoated structures.
- Both coating and heat treatment had a positive effect on the microhardness values. The highest hardness value of 566.9 HV was achieved at the heat-treated Ni-P-Gr coating.
- It was observed that the wear was higher in uncoated samples. The lowest wear scar width was obtained in the heat-treated graphene-reinforced nanocomposite coating.
- The highest wear resistance was obtained in the heat-treated nanocomposite coating.
- In the XPS analysis, binding energies of approximately 284 and 853 eV were obtained, revealing the presence of Gr and Ni in the coating structure, respectively.
- Raman spectrometry analysis revealed that the lubrication property was increased with the heat treatment.
- The wear rate of the Ti-6Al-4V substrate is approximately 98% higher than that of the heat-treated nanocomposite coating. The highest wear resistance was observed on the heat-treated nanocomposite coating.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Su, F.; Liu, C.; Guo, J.; Huang, P. Characterizations of nanocrystalline Co and Co/MWCNT coatings produced by different electrodeposition techniques. Surf. Coat. Technol. 2013, 217, 94–104. [Google Scholar] [CrossRef]
- Mina, M.; Bastwros, H.; Esawi AM, K.; Wifi, A. Friction and wear behavior of Al-CNT composites. Wear 2013, 307, 164–173. [Google Scholar]
- Mallory, G.O.; Hadju, J.B. Electroless Plating: Fundamentals and Applications; American Electroplaters and Surface Finishers Society: New York, NY, USA, 1990. [Google Scholar]
- Zhang, Q.; Wu, M.; Zhao, W. Electroless nickel plating on hollow glass microspheres. Surf. Coat. Technol. 2005, 192, 213–219. [Google Scholar] [CrossRef]
- Martyak, N.; McCaskie, J. Speciation in electroless nickel solutions. Plat. Surf. Finish. 1996, 83, 62–66. [Google Scholar]
- Wang, X.C.; Cai, W.B.; Wang, W.J.; Liu, H.T.; Yu, Z.Z. Effects of ligands on electroless Ni–P alloy plating from alkaline citrate–ammonia solution. Surf. Coat. Technol. 2003, 168, 300–306. [Google Scholar] [CrossRef]
- Pei, S.; Li, S.; Zhong, L.; Cui, K.; Yang, J.; Yang, Z. Analysis of the causes of differences between the upper and lower surfaces of electroless Ni-P Coating on LZ91 Magnesium-Lithium Alloy. Coatings 2022, 12, 1157. [Google Scholar] [CrossRef]
- Mazumdar, S.K. Composites Manufacturing: Materials, Product and Process Engineering; CRC Press LLC: Boca Raton, FL, USA, 2002. [Google Scholar]
- Akbulut, H. Alümina Fiber Takviyeli Al-Si Metal Matriksli Kompozit Üretimi ve Mikroyapı Özellik Ilişkilerinin Incelenmesi. Ph.D. Thesis, İstanbul Teknik Üniversitesi, Istanbul, Turkey, 1995. [Google Scholar]
- Evans, A.; SanMarchi, C.; Mortensen, A. Metal Matrix Composites in Industry: An Introduction and a Survey; Chawla, N., Chawla, K.K., Eds.; Metal Matrix Composites; Springer: New York, NY, USA, 2003. [Google Scholar]
- Bakhita, B.; Akbaria, A.; Nasirpouria, F.; Hosseini, M.G. Corrosion resistance of Ni–Co alloy and Ni–Co/SiC nanocomposite coatings electrodeposited by sediment codeposition technique. Appl. Surf. Sci. 2014, 307, 351–359. [Google Scholar] [CrossRef]
- Gül, H.; Kılıç, F.; Uysal, M.; Aslan, S.; Alp, A.; Akbulut, H. Effect of Particle Concentration On the Structure and Tribological Properties of Submicron Particle Sic Reinforced Ni Metal Matrix Composite (MMC) Coatings Produced by Electrodeposition. Appl. Surf. Sci. 2012, 258, 4260–4267. [Google Scholar] [CrossRef]
- Gül, H.; Akbulut, H.; Aslan, S.; Alp, A. Effect of Reciprocating Sliding Speed on the Tribological Performance of Nano SiCp Reinforced Ni-Metal Matrix Composites Produced by Electrocodeposition. J. Nanosci. Nanotechnol. 2012, 12, 9076–9087. [Google Scholar] [CrossRef]
- Ding, X.; Wang, W.; Zhang, A.; Zhang, L.; Yu, D. Efficient Visible Light Degradation of Dyes in Wastewater by Nickel–phosphorus Plating–titanium Dioxide Complex Electroless Plating Fabric. J. Mater. Res. 2019, 34, 999–1010. [Google Scholar] [CrossRef]
- Hsu, C.-I.; Hou, K.-H.; Ger, M.-D.; Wang, G.-L. The Effect of Incorporated SelfLubricated BN(h) Particles on the Tribological Properties of Ni–P/BN(h) Composite Coatings. Appl. Surf. Sci. 2015, 357, 1727–1735. [Google Scholar] [CrossRef]
- Huang, Z.; Zhou, Y.; Nguyen, T. Study of nickel matrix composite coatings deposited from electroless plating bath loaded with TiB2, ZrB2 and TiC particles for improved wear and corrosion resistance. Surf. Coat. Technol. 2019, 364, 323–329. [Google Scholar] [CrossRef]
- Arulvel, S.; Elayaperumal, A.; Jagatheeshwaran, M.S.; Satheesh, K.A. Comparative Study on the Friction-Wear Property of As-Plated, Nd-YAG Laser Treated, and Heat-Treated Electroless Nickel-Phosphorus/Crab Shell Particle Composite Coatings on Mild Steel. Surf. Coat. Technol. 2019, 357, 543–558. [Google Scholar] [CrossRef]
- Delaunois, F.; Vitry, V.; Bonin, L. (Eds.) Electroless Nickel Plating Fundamentals to Applications; CRC Press: Boca Raton, FL, USA, 2020. [Google Scholar]
- Shi, L.; Sun, C.; Gao, P.; Zhou, F.; Liu, W. Mechanical properties and wear and corrosion resistance of electrodeposited Ni–Co/SiC nanocomposite coating. Appl. Surf. Sci. 2006, 252, 3591–3599. [Google Scholar] [CrossRef]
- Jibo, J.; Haotian, C.; Liying, Z.; Qian, W.; Han, S.; Lin, H.; Huihui, W. Effect of heat treatment on structures and mechanical properties of electroless Ni-P-GO composite coatings. RSC Adv. 2016, 6, 10900. [Google Scholar]
- Tamilarasan, T.R.; Sanjith, U.; Rajendran, R.; Rajagopal, G.; Sudagar, J. Effect of Reduced Graphene Oxide Reinforcement on the Wear Characteristics of Electroless Ni-P Coatings. J. Mater. Eng. Perform. 2018, 27, 3044–3053. [Google Scholar] [CrossRef]
- Lee, C.K.; Teng, C.L.; Tan, A.H.; Yang, C.Y.; Lee, S.L. Electroless Ni-P/Diamond/Graphene Composite Coatings and Characterization of Their Wear and Corrosion Resistance in Sodium Chloride Solution. Key Eng. Mater. 2015, 656, 51–56. [Google Scholar] [CrossRef]
- Sadhir, M.H.; Saranya, M.; Aravind, M.; Srinivasan, A.; Siddharthan, A.; Rajendran, N. Comparison of in Situ and Ex Situ Reduced Graphene Oxide Reinforced Electroless Nickel Phosphorus Nanocomposite Coating. Appl. Surf. Sci. 2014, 320, 171–176. [Google Scholar] [CrossRef]
- Jiang, N.; Fu, C.Q.; Wang, Z. Research on the Microstructure and Tribological Properties of the Electroless Ni–P-PTFE Composite Repairing Coating on Gears. Appl. Mech. Mater. 2013, 327, 136–139. [Google Scholar] [CrossRef]
- Wu, H.; Liu, F.; Gong, W.; Ye, F.; Hao, L.; Jiang, J.; Han, S. Preparation of Ni–P–GO Composite Coatings and Its Mechanicals. Surf. Coat. Technol. 2015, 272, 25–32. [Google Scholar] [CrossRef]
- Uysal, M. Electroless Codeposition of Ni–P Composite Coatings: Effects of Graphene and TiO2 on the Morphology, Corrosion, and Tribological Properties. Metall. Mater. Trans. A 2019, 50, 2331–2341. [Google Scholar] [CrossRef]
- Kumari, S.; Panigrahi, A.; Singh, S.K.; Pradhan, S.K. Corrosion-Resistant Hydrophobic Nanostructured Ni-Reduced Graphene Oxide Composite Coating with Improved Mechanical Properties. J. Mater. Eng. Perform. 2018, 27, 5889–5897. [Google Scholar] [CrossRef]
- Hu, Q.-H.; Wang, X.-T.; Chen, H.; Wang, Z.-F. Synthesis of Ni/Graphene Sheets by an Electroless Ni-plating Method. New Carbon Mater. 2012, 27, 35–41. [Google Scholar] [CrossRef]
- Yu, Q.; Zhou t Jiang, Y.; Yan, X.; An, Z.; Wang, X.; Zhang, D.; Ono, T. Preparation of Graphene-Enhanced Nickel-Phosphorus Composite Films by Ultrasonic-Assisted Electroless Plating. Aplied Surf. Sci. 2018, 435, 617–625. [Google Scholar] [CrossRef]
- Srivatswa, A.; Sarkar, S.; De, J.; Majumdar, G. Parametric optimization of electroless Ni-P-CNT coating using genetic algorithm to maximie the rate of deposition. Mater. Today Proc. 2022, 66, 3769–3774. [Google Scholar]
- Rashad, M.; Pan, F.; Tang, A.; Asif, M. Effect of Graphene Nanoplatelets addition on mechanical properties of pure aluminum using a semi-powder method. Prog. Nat. Sci. Mater. Int. 2014, 24, 101–108. [Google Scholar] [CrossRef]
- Mindivan, F.; Aydın, K.; Mindivan, H. Production and Characterization of Electrodeposited Nickel/Graphene Composite Coatings. Nevşehir Bilim Ve Teknol. Derg. 2019, 8, 29–36. [Google Scholar] [CrossRef]
- Gao, X.; Yue, H.; Guo, E. Mechanical properties and thermal conductivity of graphene reinforced copper matrix composites. Powder Technol. 2016, 301, 601. [Google Scholar] [CrossRef]
- Bardes, B.P. Metals Handbook, Volume 3 Properties and Selection: Stainless Steels, Tool Materials and Species-Purpose Metals Titanium and Titanium Alloys, 9th ed.; ASM: Almere, The Netherlands, 1980. [Google Scholar]
- Tanrıöver, K.; Taşçı, A. Titanyum Alaşımlarının Isıl İşlemi. Makine Mag. 1997, 1, 58. [Google Scholar]
- Brunette, D.M.; Tengwall, B.; Textor, M.; Thomsen, P. Titanium in Medicine; Springer: Heidelberg, Germany, 2001. [Google Scholar]
- Long, M.; Rack, H.J. Titanium alloys in total joint replacement- a materials science perspective. Biomaterials 1998, 19, 1621–1639. [Google Scholar] [CrossRef]
- Gupta, M.K.; Etri, H.E.; Korkmaz, M.E.; Ross, N.S.; Krolczyk, G.M.; Gawlik, J.; Pimenov, D.Y. Tribological and surface morphological characteristics of titanium alloys: A review. Arch. Civ. Mech. Eng. 2022, 22, 72. [Google Scholar] [CrossRef]
- Shum, P.W.; Zhou, Z.F.; Li, K.Y. Investigation of the tribological properties of the different textured DLC coatings under reciprocating lubricated conditions. Tribol. Int. 2013, 65, 259–264. [Google Scholar] [CrossRef]
- Kaur, S.; Ghadirinejad, K.; Reza, H.O. An Overview on the Tribological Performance of Titanium Alloys with Surface Modifications for Biomedical Applications. Lubricants 2019, 7, 65. [Google Scholar] [CrossRef]
- Yilbaş, B.S.; Şahin, A.Z.; Al-Garni, A.Z.; Said, S.A.; Ahmed, Z.; Abdulaleem, B.J.; Sami, M. Plasma nitriding of Ti6Al4V alloy to improve some tribological properties. Surf. Coat. Technol. 1996, 80, 287–292. [Google Scholar] [CrossRef]
- Schlesinger, M. Modern Electroplating, 5th ed.; John Wiley & Sons Inc: Toronto, ON, Canada, 2010. [Google Scholar]
- Riedel, W. Electroless Nickel Plating, Metals Park; ASM International: Novelty, OH, USA, 1991. [Google Scholar]
- Çakır, A.F. Akımsız Nikel Kaplamalar ve Uygulamaları. Yüzey İşlemler 2001, 98, 76–83. [Google Scholar]
- Shahin, G.E. Comparison of Electroless Nickel & Functional Chromium. In Proceedings of the SUR/FIN 2009 Technical Conference, Louisville, KY, USA, 16–17 June 2009. [Google Scholar]
- Meshram, A.P.; Kumar, M.K.P.; Srivastava, C. Enhancement in the corrosion resistance behaviour of amorphous Ni-P coatings by incorporation of graphene. Diam. Relat. Mater. 2020, 105, 107795. [Google Scholar] [CrossRef]
- Yasin, G.; Khan, M.A.; Arif, M.; Shakeel, M.; Hassan, T.M.; Khan, W.Q.; Korai, R.M.; Abbas, Z.; Zuo, Y. Synthesis of spheres-like Ni/graphene nanocomposite as an efficient anti-corrosive coating; effect of graphene content on its morphology and mechanical properties. J. Alloys Compd. 2018, 755, 79–88. [Google Scholar] [CrossRef]
- Brunelli, K.; Dabala, M.; Magrini, M. Diffusion treatment of Ni–B coatings by induction heating to harden the surface of Ti–6Al–4V alloy. Mater. Chem. Phys. 2009, 115, 467–472. [Google Scholar] [CrossRef]
- Balaraju, J.N.; Saroary, J.; Anjana, J.; Rajam, K.S. Structure and phase transformation behavior of electroless Ni–P alloys containing tin and tungsten. J. Alloys Compd. 2007, 436, 319–327. [Google Scholar] [CrossRef]
- Thomas, E.W.; Schlesinger, M. The Effect of Solution PH and Heat-Treatment on the Properties of Electroless Nickel-boron Films. J. Electrochem. Soc. 1994, 141, 78–82. [Google Scholar] [CrossRef]
- Du, S.; Li, Z.; He, Z.; Ding, H.; Wang, X.; Zhang, Y. Effect of Temperature on the Friction and Wear Behavior of Electroless Ni–P–MoS2–CaF2 Self-Lubricating Composite Coatings. Tribol. Int. 2018, 128, 197–203. [Google Scholar] [CrossRef]
- Wu, Y.T.; Lei, L.; Shen, B.; Hu, W.B. Investigation in Electroless NiP- Cg(Graphite)-SiC Composite Coating. Surf. Coat. Technol. 2006, 201, 441–445. [Google Scholar] [CrossRef]
- Apachitei, I.; Duszczyk, J.; Katgerman, L.; Overkamp, P.J.B. Electroless Ni–P Composite Coatings: The Effect of Heat Treatment on The Microhardness of Substrate and Coating. Scr. Mater. 1998, 38, 1347–1353. [Google Scholar] [CrossRef]
- Zhecheva, A.; Sha, W.; Malinov, S.; Long, A. Enhancing the microstructure and properties of titanium alloys through nitriding and other surface engineering methods. Surf. Coat. Technol. 2015, 200, 2192–2207. [Google Scholar] [CrossRef]
- Praveen, B.M.; Venkatesha, T.V. Electrodeposition and properties of Zn–Ni–CNT composite coatings. J. Alloys Compd. 2009, 482, 53–57. [Google Scholar] [CrossRef]
- Baudrand, D.W. Electroless Nickel Plating; ASM International: Materials Park, OH, USA, 1994. [Google Scholar]
- Kumar, C.M.P.; Venkatesha, T.V.; Shabadi, R. Preparation and corrosion behavior of Ni and Ni–graphene composite coatings. Mater. Res. Bull. 2013, 48, 1477–1483. [Google Scholar] [CrossRef]
- Algul, H.; Tokur, M.; Ozcan, S.; Uysal, M.; Cetinkaya, T.; Akbulut, H.; Alp, A. The effect of graphene content and sliding speed on the wear mechanism of nickel–graphene nanocomposites. Appl. Surf. Sci. 2015, 359, 340–348. [Google Scholar] [CrossRef]
- Xu, Z.Q.; Zhang, X.; Shi, W.; Zhai, K.Y. Tribological Properties of TiAl Matrix Self-Lubricating Composites Containing Multilayer Graphene and Ti3SiC2 at High Temperatures. Tribol. Trans. 2015, 58, 1131–1141. [Google Scholar] [CrossRef]
- Karslıoğlu, R. Karbon Nanotüp Takviyeli Nikel-Kobalt Kaplamaların Geliştirilmesi. Ph.D. Thesis, Sakarya University, Serdivan, Turkey, 2014. [Google Scholar]
- Karslioglu, R.; Akbulut, H. Comparison microstructure and sliding wear properties of nickel–cobalt/CNT composite coatings by DC, PC and PRC current electrodeposition. Appl. Surf. Sci. 2015, 353, 615–627. [Google Scholar] [CrossRef]
- Sharma, S.; Sangal, S.; Monda, K. On the optical microscopic method for the determination of ball-on-flatsurface linearly reciprocating sliding wear volume. Wear 2013, 300, 82–89. [Google Scholar] [CrossRef]
- Bai, H.; Zhong, L.; Kang, L.; Zhuang, W.; Lv, Z.; Xu, Y. A review on wear-resistant coating with high hardness and high toughness on the surface of titanium alloy. J. Alloys Compd. 2021, 882, 160645. [Google Scholar] [CrossRef]
- Uygunoğlu, T.; Brostow, W.; Gunes, I. Wear and friction of composites of an epoxy with boron containing wastes. Polimeros 2015, 25, 271–276. [Google Scholar] [CrossRef]
- Khruschov, M. Resistance of metal to wear by abrasion as related to hardness. In Proceedings of the Conference Lubrication and Wear, London, UK, 1–3 October 1957; Institution of Mechanical Engineers: London, UK; pp. 655–659. [Google Scholar]
- Tiwari, S.K.; Kumar, V.; Huczko, A.; Oraon, R.; Adhikari, A.D.; Nayak, G.C. Magical Allotropes of Carbon: Prospects and Applications. Crit. Rev. Solid State Mater. Sci. 2016, 41, 257–317. [Google Scholar] [CrossRef]
- Zeng, Q.; Erdemir, A.; Eryılmaz, O. Ultralow Friction of ZrO2 Ball Sliding against DLC Films under Various Environments. Appl. Sci. 2017, 7, 938. [Google Scholar] [CrossRef]
- Penkov, O.V. Tribology of Graphene: Simulation Methods, Preparation Methods, and Their Applications; Elsevier Inc.: Zhejiang, China, 2020. [Google Scholar]
- Zhang, W.; Li, Y.; Zeng, X.; Peng, S. Synergetic effect of metal nickel and graphene as a cocatalyst for enhanced photocatalytic hydrogen evolution via dye sensitization. Sci. Rep. 2015, 5, 10589. [Google Scholar] [CrossRef]
- Johra, F.T.; Lee, J.W.; Jung, W.G. Facile and Safe Graphene Preparation on Solution-based platform. J. Ind. Eng. Chem. 2014, 20, 2883–2887. [Google Scholar] [CrossRef]
- Binding Energy of Graphene (n.d). Available online: https://www.jp.xpssimplified.com/elements/carbon.php (accessed on 25 February 2022).
- Malard, L.M.; Pimenta, M.A.; Dresselhaus, G.; Dresselhaus, M.S. Raman spectroscopy in graphene. Phys. Rep. 2009, 473, 51–87. [Google Scholar] [CrossRef]
- Ferrari, A.C. Raman spectroscopy of graphene and graphite: Disorder, electron-phonon coupling, doping and nonadiabatic effects. Solid State Commun. 2007, 143, 47–57. [Google Scholar] [CrossRef]
- Vidano, R.P.; Fischbach, D.B.; Willis, L.J.; Loehr, T.M. Observation of Raman Band Shifting with Excitation Wavelength for Carbons and Graphites. Solid State Commun. 1981, 39, 341–344. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gunduz, H.; Karslioglu, R.; Ozturk, F. Microstructural Evaluation of Graphene-Reinforced Nickel Matrix Ni-P-Gr Coating on Ti-6Al-4V Alloy by the Electroless Coating Method. Coatings 2022, 12, 1827. https://doi.org/10.3390/coatings12121827
Gunduz H, Karslioglu R, Ozturk F. Microstructural Evaluation of Graphene-Reinforced Nickel Matrix Ni-P-Gr Coating on Ti-6Al-4V Alloy by the Electroless Coating Method. Coatings. 2022; 12(12):1827. https://doi.org/10.3390/coatings12121827
Chicago/Turabian StyleGunduz, Hatice, Ramazan Karslioglu, and Fahrettin Ozturk. 2022. "Microstructural Evaluation of Graphene-Reinforced Nickel Matrix Ni-P-Gr Coating on Ti-6Al-4V Alloy by the Electroless Coating Method" Coatings 12, no. 12: 1827. https://doi.org/10.3390/coatings12121827
APA StyleGunduz, H., Karslioglu, R., & Ozturk, F. (2022). Microstructural Evaluation of Graphene-Reinforced Nickel Matrix Ni-P-Gr Coating on Ti-6Al-4V Alloy by the Electroless Coating Method. Coatings, 12(12), 1827. https://doi.org/10.3390/coatings12121827