Ink-Jet Printing towards Ultra-High Resolution: A Review
Abstract
:1. Introduction
2. Discussion
2.1. Droplet Formation
2.2. Droplet Falling
2.3. Droplet Impinging
2.4. Droplet Spreading
2.5. Pixel Formation
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ryu, E.S.; Ryu, Y.; Roh, H.J.; Kim, J.; Lee, B.G. Towards Robust Uhd Video Streaming Systems Using Scalable High Efficiency Video Coding. In Proceedings of the 2015 International Conference on Information and Communication Technology Convergence (ICTC), Jeju, Republic of Korea, 28–30 October 2015; IEEE: Piscataway, NJ, USA, 2015. [Google Scholar]
- Gao, M.; Li, L.; Song, Y. Inkjet printing wearable electronic devices. J. Mater. Chem. C 2017, 5, 2971–2993. [Google Scholar] [CrossRef]
- Suresha, D.; Prakash, H.N. Single Picture Super Resolution of Natural Images Using N-Neighbor Adaptive Bilinear Interpolation and Absolute Asymmetry Based Wavelet Hard Thresholding. In Proceedings of the 2016 2nd International Conference on Applied and Theoretical Computing and Communication Technology (iCATccT), Bangalore, India, 21–23 July 2016; IEEE: Piscataway, NJ, USA, 2016. [Google Scholar]
- Meng, T.; Zheng, Y.; Zhao, D.; Hu, H.; Zhu, Y.; Xu, Z.; Ju, S.; Jing, J.; Chen, X.; Gao, H.; et al. Ultrahigh-resolution quantum-dot light-emitting diodes. Nat. Photon. 2022, 16, 297–303. [Google Scholar] [CrossRef]
- Shah, M.A.; Lee, D.-G.; Lee, B.-Y.; Hur, S. Classifications and Applications of Inkjet Printing Technology: A Review. IEEE Access 2021, 9, 140079–140102. [Google Scholar] [CrossRef]
- Böberl, M.; Kovalenko, M.; Gamerith, S.; List, E.J.W.; Heiss, W. Inkjet-Printed Nanocrystal Photodetectors Operating up to 3 μm Wavelengths. Adv. Mater. 2007, 19, 3574–3578. [Google Scholar] [CrossRef]
- Basaran, O.A.; Gao, H.; Bhat, P.P. Nonstandard Inkjets. Annu. Rev. Fluid Mech. 2013, 45, 85–113. [Google Scholar] [CrossRef]
- Sun, Y.; Chen, X.; Zhou, X.; Zhu, J.; Yu, Y. Droplet-in-oil array for picoliter-scale analysis based on sequential inkjet printing. Lab. A Chip. 2015, 15, 2429–2436. [Google Scholar] [CrossRef]
- Liu, Y.; Cui, T.; Varahramyan, K. All-polymer capacitor fabricated with inkjet printing technique. Solid-State Electron. 2003, 47, 1543–1548. [Google Scholar] [CrossRef]
- Kim, K.; Ahn, S.I.; Choi, K.C. Direct fabrication of copper patterns by reactive inkjet printing. Curr. Appl. Phys. 2013, 13, 1870–1873. [Google Scholar] [CrossRef]
- Wiklund, J.; Karakoç, A.; Palko, T.; Yiğitler, H.; Ruttik, K.; Jäntti, R.; Paltakari, J. A Review on Printed Electronics: Fabrication Methods, Inks, Substrates, Applications and Environmental Impacts. J. Manuf. Mater. Process. 2021, 5, 89. [Google Scholar] [CrossRef]
- Lemarchand, J.; Bridonneau, N.; Battaglini, N.; Carn, F.; Mattana, G.; Piro, B.; Zrig, S.; Noël, V. Challenges, Prospects, and Emerging Applications of Inkjet-Printed Electronics: A Chemist’s Point of View. Angew. Chem. Int. Ed. 2022, 61, e202200166. [Google Scholar] [CrossRef]
- Kim, D.-G.; Hou, J.-U.; Lee, H.-K. Learning deep features for source color laser printer identification based on cascaded learning. Neurocomputing 2019, 365, 219–228. [Google Scholar] [CrossRef] [Green Version]
- Li, D.; Lai, W.; Zhang, Y.; Huang, W. Printable Transparent Conductive Films for Flexible Electronics. Adv. Mater. 2018, 30, 1704738. [Google Scholar] [CrossRef]
- Mandrycky, C.; Wang, Z.; Kim, K.; Kim, D.H. 3D Bioprinting for Engineering Complex Tissues. Biotechnol. Adv. 2016, 34, 422–434. [Google Scholar] [CrossRef] [Green Version]
- Lohse, D. Fundamental Fluid Dynamics Challenges in Inkjet Printing. Annu. Rev. Fluid Mech. 2022, 54, 349–382. [Google Scholar] [CrossRef]
- Roh, H.; Ko, D.; Shin, D.Y.; Chang, J.H.; Hahm, D.; Bae, W.K.; Lee, C.; Kim, J.Y.; Kwak, J. Enhanced Performance of Pixelated Quantum Dot Light-Emitting Diodes by Inkjet Printing of Quantum Dot–Polymer Composites. Adv. Opt. Mater. 2021, 9, 2002129. [Google Scholar] [CrossRef]
- Yang, J.; Zheng, F.; Derby, B. Stability of Lines with Zero Receding Contact Angle Produced by Inkjet Printing at Small Drop Volume. Langmuir 2021, 37, 26–34. [Google Scholar] [CrossRef]
- Yoon, D.G.; Kang, Y.J.; Bail, R.; Chin, B.D. Interfaces and Pattern Resolution of Inkjet-Printed Organic Light-Emitting Diodes with a Novel Hole Transport Layer. J. Inf. Disp. 2021, 22, 91–98. [Google Scholar] [CrossRef]
- Yang, P.; Zhang, L.; Kang, D.J.; Strahl, R.; Kraus, T. High-Resolution Inkjet Printing of Quantum Dot Light-Emitting Microdiode Arrays. Adv. Opt. Mater. 2019, 8, 1901429. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Li, D.; Liu, Y.; Wittstock, G. Inkjet Printing in Liquid Environments. Small 2018, 14, e1801212. [Google Scholar] [CrossRef]
- Hu, H.; Larson, R.G. Analysis of the Microfluid Flow in an Evaporating Sessile Droplet. Langmuir 2005, 21, 3963–3971. [Google Scholar] [CrossRef]
- Nikolov, D.A.; Wasan, D.T.; Wu, P. Marangoni Flow Alters Wetting: Coffee Ring and Superspreading. Curr. Opin. Colloid Interface Sci. 2021, 51, 101387. [Google Scholar] [CrossRef]
- Derby, B. Additive Manufacture of Ceramics Components by Inkjet Printing. Engineering 2015, 1, 113–123. [Google Scholar] [CrossRef] [Green Version]
- Mu, L.; Hu, Z.; Zhong, Z.; Jiang, C.; Wang, J.; Peng, J.; Cao, Y. Inkjet-printing line film with varied droplet-spacing. Org. Electron. 2017, 51, 308–313. [Google Scholar] [CrossRef]
- Tsai, M.-H.; Hwang, W.-S. Effects of Pulse Voltage on the Droplet Formation of Alcohol and Ethylene Glycol in a Piezoelectric Inkjet Printing Process with Bipolar Pulse. Mater. Trans. 2008, 49, 331–338. [Google Scholar] [CrossRef] [Green Version]
- Antonopoulou, E.; Harlen, O.G.; Rump, M.; Segers, T.; Walkley, M.A. Effect of surfactants on jet break-up in drop-on-demand inkjet printing. Phys. Fluids 2021, 33, 072112. [Google Scholar] [CrossRef]
- Tao, R.; Peng, J.; Ning, H.; Chen, J.; Zou, J.; Fang, Z.; Yang, C.; Zhou, Y.; Zhang, J.; Yao, R. Inkjet Printed Electrodes in Thin Film Transistors. IEEE J. Electron Devices Soc. 2018, 6, 774–790. [Google Scholar] [CrossRef]
- Dybowska-Sarapuk, L.; Kielbasinski, K.; Araźna, A.; Futera, K.; Skalski, A.; Janczak, D.; Sloma, M.; Jakubowska, M. Efficient Inkjet Printing of Graphene-Based Elements: Influence of Dispersing Agent on Ink Viscosity. Nanomaterials 2018, 8, 602. [Google Scholar] [CrossRef] [Green Version]
- Perelaer, J.J.; Smith, P.J.; Wijnen, M.M.P.; Bosch, E.V.D.; Eckardt, R.R.; Ketelaars, P.H.J.M.; Schubert, U.S. Droplet Tailoring Using Evaporative Inkjet Printing. Macromol. Chem. Phys. 2009, 210, 387–393. [Google Scholar] [CrossRef]
- Dohnal, J.; Štěpánek, F. Inkjet fabrication and characterization of calcium alginate microcapsules. Powder Technol. 2010, 200, 254–259. [Google Scholar] [CrossRef]
- Du, W.; Fu, T.; Zhang, Q.; Zhu, C.; Ma, Y.; Li, H.Z. Breakup dynamics for droplet formation in a flow-focusing device: Rupture position of viscoelastic thread from matrix. Chem. Eng. Sci. 2016, 153, 255–269. [Google Scholar] [CrossRef]
- Bridonneau, N.; Mattana, G.; Noel, V.; Zrig, S.; Carn, F. Morphological Control of Linear Particle Deposits from the Drying of Inkjet-Printed Rivulets. J. Phys. Chem. Lett. 2020, 11, 4559–4563. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.; Li, H.; Li, M.; Li, Y.; Chen, S.; Bao, B.; Song, Y. Rayleigh Instability-Assisted Satellite Droplets Elimination in Inkjet Printing. ACS Appl. Mater. Interfaces 2017, 9, 41521–41528. [Google Scholar] [CrossRef] [PubMed]
- Zhan, Y.; Sun, G.; Okawa, T.; Aoyagi, M.; Takata, T. Droplet generation during spray impact onto a downward-facing solid surface. Exp. Therm. Fluid Sci. 2021, 126, 110402. [Google Scholar] [CrossRef]
- Zhao, D.; Zhou, H.; Wang, Y.; Yin, J.; Huang, Y. Drop-on-demand (DOD) inkjet dynamics of printing viscoelastic conductive ink. Addit. Manuf. 2021, 48, 102451. [Google Scholar] [CrossRef]
- Deng, T.; Varanasi, K.K.; Hsu, M.; Bhate, N.; Keimel, C.; Stein, J.; Blohm, M. Nonwetting of Impinging Droplets on Textured Surfaces. Appl. Phys. Lett. 2009, 94, 133109. [Google Scholar] [CrossRef] [Green Version]
- De Goede, T.C.; Laan, N.; De Bruin, K.G.; Bonn, D. Effect of Wetting on Drop Splashing of Newtonian Fluids and Blood. Langmuir 2017, 34, 5163–5168. [Google Scholar] [CrossRef] [Green Version]
- Modak, D.C.; Kumar, A.; Tripathy, A.; Sen, P. Drop Impact Printing. Nat. Commun. 2020, 11, 4327. [Google Scholar] [CrossRef]
- Hao, J.; Lu, J.; Lee, L.; Wu, Z.; Hu, G.; Floryan, J.M. Droplet Splashing on an Inclined Surface. Phys. Rev. Lett. 2019, 122, 054501. [Google Scholar] [CrossRef] [Green Version]
- Sun, X.; Zhu, C.; Fu, T.; Ma, Y.; Li, H.Z. Dynamics of droplet breakup and formation of satellite droplets in a microfluidic T-junction. Chem. Eng. Sci. 2018, 188, 158–169. [Google Scholar] [CrossRef]
- Driscoll, M.; Stevens, C.S.; Nagel, S.R. Thin film formation during splashing of viscous liquids. Phys. Rev. E 2010, 82, 036302. [Google Scholar] [CrossRef]
- Shi, L.; Liu, Y.; Lu, H.; Meng, Y.; Hu, G.; Tian, Y. Viscous Force Retards Initial Droplet Spreading. J. Phys. Chem. C 2017, 121, 22054–22059. [Google Scholar] [CrossRef] [Green Version]
- Haley, P.J.; Miksis, M.J. The effect of the contact line on droplet spreading. J. Fluid Mech. 1991, 223, 57–81. [Google Scholar] [CrossRef]
- Zhang, X.; Basaran, O.A. Dynamic Surface Tension Effects in Impact of a Drop with a Solid Surface. J. Colloid Interface Sci. 1997, 187, 166–178. [Google Scholar] [CrossRef]
- Zhang, H. Theoretical analysis of spreading and solidification of molten droplet during thermal spray deposition. Int. J. Heat Mass Transf. 1999, 42, 2499–2508. [Google Scholar] [CrossRef]
- Beedasy, V.; Smith, P.J. Printed Electronics as Prepared by Inkjet Printing. Materials 2020, 13, 704. [Google Scholar] [CrossRef] [Green Version]
- Gibbons, M.J.; Di Marco, P.; Robinson, A.J. Heat Flux Distribution beneath Evaporating Hydrophilic and Superhydrophobic Droplets. Int. J. Heat Mass Transf. 2020, 148, 119093. [Google Scholar] [CrossRef]
- Miliauskas, G. Regularities of unsteady radiative–conductive heat transfer in evaporating semitransparent liquid droplets. Int. J. Heat Mass Transf. 2001, 44, 785–798. [Google Scholar] [CrossRef]
- Sun, W.; Ji, J.; Li, Y.; Xie, X. Dispersion and settling characteristics of evaporating droplets in ventilated room. Build. Environ. 2007, 42, 1011–1017. [Google Scholar] [CrossRef]
- Ruberto, S.; Reutzsch, J.; Weigand, B. Experimental investigation of the evaporation rate of supercooled water droplets at constant temperature and varying relative humidity. Int. Commun. Heat Mass Transf. 2016, 77, 190–194. [Google Scholar] [CrossRef]
- Deegan, R.D. Pattern formation in drying drops. Phys. Rev. E 2000, 61, 475–485. [Google Scholar] [CrossRef]
- Layani, M.; Gruchko, M.; Milo, O.; Balberg, I.; Azulay, D.; Magdassi, S. Transparent Conductive Coatings by Printing Coffee Ring Arrays Obtained at Room Temperature. ACS Nano 2009, 3, 3537–3542. [Google Scholar] [CrossRef] [PubMed]
- Kuang, M.; Wang, L.; Song, Y. Controllable Printing Droplets for High-Resolution Patterns. Adv. Mater. 2014, 26, 6950–6958. [Google Scholar] [CrossRef] [PubMed]
- Singh, M.; Haverinen, H.M.; Dhagat, P.; Jabbour, G.E. Inkjet Printing-Process and Its Applications. Adv. Mater. 2010, 22, 673–685. [Google Scholar] [CrossRef] [PubMed]
- Deegan, R.; Bakajin, O.; Dupont, T.F.; Huber, G.; Nagel, S.R.; Witten, T.A. Contact line deposits in an evaporating drop. Phys. Rev. E 2000, 62, 756–765. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Zhu, Y.; Hu, H.; Guo, T.; Li, F. Quantum Dot Self-Assembly Deposition in Physically Confined Microscale Space by Using an Inkjet Printing Technique. J. Phys. Chem. Lett. 2021, 12, 8605–8613. [Google Scholar] [CrossRef]
- Kim, D.; Jeong, S.; Park, B.K.; Moon, J. Direct writing of silver conductive patterns: Improvement of film morphology and conductance by controlling solvent compositions. Appl. Phys. Lett. 2006, 89, 264101. [Google Scholar] [CrossRef]
- Lebovka, N.I.; Gigiberiya, V.A.; Lytvyn, O.S.; Tarasevich, Y.Y.; Vodolazskaya, I.V.; Bondarenko, O.P. Drying of Sessile Droplets of Laponite-Based Aqueous Nanofluids. Colloids Surf. A Physicochem. Eng. Asp. 2014, 462, 52–63. [Google Scholar] [CrossRef]
- Kim, D.-O.; Pack, M.; Hu, H.; Kim, H.; Sun, Y. Deposition of Colloidal Drops Containing Ellipsoidal Particles: Competition between Capillary and Hydrodynamic Forces. Langmuir 2016, 32, 11899–11906. [Google Scholar] [CrossRef]
- Soltman, D.; Subramanian, V. Inkjet-Printed Line Morphologies and Temperature Control of the Coffee Ring Effect. Langmuir 2008, 24, 2224–2231. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, X.; Xin, Z.; Deng, M.; Wen, Y.; Song, Y. Controlled Inkjetting of a Conductive Pattern of Silver Nanoparticles Based on the Coffee-Ring Effect. Adv. Mater. 2013, 25, 6714–6718. [Google Scholar] [CrossRef]
- Qi, P.; Xu, Z.; Zhang, T.; Fei, T.; Wang, R. Chitosan wrapped multiwalled carbon nanotubes as quartz crystal microbalance sensing material for humidity detection. J. Colloid Interface Sci. 2020, 560, 284–292. [Google Scholar] [CrossRef] [PubMed]
- Liang, W.; Wang, B.; Cheng, J.; Xiao, D.; Xie, Z.; Zhao, J. 3D, eco-friendly metal-organic frameworks@carbon nanotube aerogels composite materials for removal of pesticides in water. J. Hazard. Mater. 2020, 401, 123718. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Lou, M.; Yuan, X.; Dong, W.; Dong, C.; Bi, H.; Huang, F. Nitrogen and oxygen dual-doped carbon nanohorn for electrochemical capacitors. Carbon 2017, 118, 511–516. [Google Scholar] [CrossRef]
- Kameta, N.; Ding, W.; Masuda, M. Glycolipid Nanotube Templates for the Production of Hydrophilic/Hydrophobic and Left/Right-Handed Helical Polydiacetylene Nanotubes. Chem. Commun. 2021, 57, 464–467. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, X.; Wang, W.; Li, B.; Wu, P.; Ren, M.; Cheng, Z.; Chen, T.; Liu, X. One-Step Preparation of Oxygen/Fluorine Dual Functional MWCNTs with Good Water Dispersibility by the Initiation of Fluorine Gas. ACS Appl. Mater. Interfaces 2016, 8, 7991–7999. [Google Scholar] [CrossRef]
- Okamoto, K.; Shook, C.J.; Bivona, L.; Lee, A.S.B.; English, D.S. Direct Observation of Wetting and Diffusion in the Hydrophobic Interior of Silica Nanotubes. Nano Lett. 2004, 4, 233–239. [Google Scholar] [CrossRef]
- Chaban, V. Filling carbon nanotubes with liquid acetonitrile. Chem. Phys. Lett. 2010, 496, 50–55. [Google Scholar] [CrossRef]
- Ohba, T.; Ideta, K.; Hata, K.; Yoon, S.-H.; Miyawaki, J.; Hata, K. Fast Water Relaxation through One-Dimensional Channels by Rapid Energy Transfer. ChemPhysChem 2016, 17, 3409–3415. [Google Scholar] [CrossRef]
- Keller, K.; Yakovlev, A.V.; Grachova, E.V.; Vinogradov, A.V. Inkjet Printing of Multicolor Daylight Visible Opal Holography. Adv. Funct. Mater. 2018, 28, 1706903. [Google Scholar] [CrossRef]
- Fraters, A.; Jeurissen, R.; Berg, M.V.D.; Reinten, H.; Wijshoff, H.; Lohse, D.; Versluis, M.; Segers, T. Secondary Tail Formation and Breakup in Piezoacoustic Inkjet Printing: Femtoliter Droplets Captured in Flight. Phys. Rev. Appl. 2020, 13, 024075. [Google Scholar] [CrossRef]
- Shin, P.; Sung, J.; Lee, M.H. Control of droplet formation for low viscosity fluid by double waveforms applied to a piezoelectric inkjet nozzle. Microelectron. Reliab. 2011, 51, 797–804. [Google Scholar] [CrossRef]
- Sen, U.; Datt, C.; Segers, T.; Wijshoff, H.; Snoeijer, J.H.; Versluis, M.; Lohse, D. The retraction of jetted slender viscoelastic liquid filaments. J. Fluid Mech. 2021, 929, A25. [Google Scholar] [CrossRef]
- Kwon, J.-W.; Sim, H.-S.; Lee, J.-H.; Hwang, K.-T.; Han, K.-S.; Kim, J.-H.; Kim, U.-S. Optimization of Aqueous Nano Ceramic Ink and Printing Characterization for Digital Ink-Jet Printing. J. Korean Ceram. Soc. 2017, 54, 478–483. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Ai, Z.J.; Wu, Y.; Jian, Q.P.; Da Yang, Y.; Wang, S.; Chen, P.; Liu, X. Tubing Cleaning Nozzle Assembly Structure Improvement and Numerical Simulation. Appl. Mech. Mater. 2013, 457–458, 510–513. [Google Scholar] [CrossRef]
- Choi, S.; Cho, K.H.; Namgoong, J.W.; Kim, J.Y.; Yoo, E.S.; Lee, W.; Jung, J.W.; Choi, J. The synthesis and characterisation of the perylene acid dye inks for digital textile printing. Dye. Pigment. 2018, 163, 381–392. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qiu, X.; Gong, X.; Zhang, X.; Zheng, W. Ink-Jet Printing towards Ultra-High Resolution: A Review. Coatings 2022, 12, 1893. https://doi.org/10.3390/coatings12121893
Qiu X, Gong X, Zhang X, Zheng W. Ink-Jet Printing towards Ultra-High Resolution: A Review. Coatings. 2022; 12(12):1893. https://doi.org/10.3390/coatings12121893
Chicago/Turabian StyleQiu, Xinbo, Xiliang Gong, Xiaoyu Zhang, and Weitao Zheng. 2022. "Ink-Jet Printing towards Ultra-High Resolution: A Review" Coatings 12, no. 12: 1893. https://doi.org/10.3390/coatings12121893
APA StyleQiu, X., Gong, X., Zhang, X., & Zheng, W. (2022). Ink-Jet Printing towards Ultra-High Resolution: A Review. Coatings, 12(12), 1893. https://doi.org/10.3390/coatings12121893