Influence of Optional Crystallization Firing on the Adhesion of Zirconia-Reinforced Lithium Silicate before and after Aging
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Study Design
2.2. Specimens Preparation
2.3. Fabrication of Resin Cement Cylinders
2.4. Thermocycling Aging
2.5. Micro Shear Bond Strength (µSBS) Test
2.6. Failure Mode Analysis
2.7. Scanning Electron Microscopy (SEM)
2.8. Data Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Abduo, J.; Sambrook, R.J. Longevity of Ceramic Onlays: A Systematic Review. J. Esthet. Restor. Dent. 2018, 30, 193–215. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Lawn, B.R. Novel Zirconia Materials in Dentistry. J. Dent. Res. 2018, 97, 140–147. [Google Scholar] [CrossRef] [PubMed]
- Brandt, S.; Winter, A.; Lauer, H.-C.; Kollmar, F.; Portscher-Kim, S.-J.; Romanos, G. IPS e.Max for All-Ceramic Restorations: Clinical Survival and Success Rates of Full-Coverage Crowns and Fixed Partial Dentures. Materials 2019, 12, 462. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Matos, J.D.M.; Lopes, G.R.S.; Queiroz, D.A.; Nakano, L.J.N.; Ribeiro, N.C.R.; Barbosa, A.B.; Anami, L.C.; Bottino, M.A. Dental Ceramics: Fabrication Methods and Aesthetic Characterization. Coatings 2022, 12, 1228. [Google Scholar] [CrossRef]
- Tanaka, I.V.; Tribst, J.P.M.; Silva-Concilio, L.R.; Bottino, M.A. Effect of Different Ceramic Materials on Fatigue Resistance and Stress Distribution in Upper Canines with Palatal Veneers. Eur. J. Dent. 2022, 16, 856–866. [Google Scholar] [CrossRef]
- Riquieri, H.; Monteiro, J.B.; Viegas, D.C.; Campos, T.M.B.; de Melo, R.M.; Saavedra, G.d.S.F.A. Impact of Crystallization Firing Process on the Microstructure and Flexural Strength of Zirconia-Reinforced Lithium Silicate Glass-Ceramics. Dent. Mater. 2018, 34, 1483–1491. [Google Scholar] [CrossRef] [Green Version]
- de Saavedra, G.S.F.A.; Tribst, J.P.M.; de Ramos, N.C.; de Melo, R.M.; Rodrigues, V.A.; Ramos, G.F.; Bottino, M.A. Feldspathic and Lithium Disilicate Onlays with a 2-Year Follow-up: Split-Mouth Randomized Clinical Trial. Braz. Dent. J. 2021, 32, 53–63. [Google Scholar] [CrossRef] [PubMed]
- Krüger, S.; Deubener, J.; Ritzberger, C.; Höland, W. Nucleation Kinetics of Lithium Metasilicate in ZrO2-Bearing Lithium Disilicate Glasses for Dental Application. Int. J. Appl. Glass Sci. 2013, 4, 9–19. [Google Scholar] [CrossRef]
- Rinke, S.; Pfitzenreuter, T.; Leha, A.; Roediger, M.; Ziebolz, D. Clinical Evaluation of Chairside-Fabricated Partial Crowns Composed of Zirconia-Reinforced Lithium Silicate Ceramics: 3-Year Results of a Prospective Practice-Based Study. J. Esthet. Restor. Dent. 2020, 32, 226–235. [Google Scholar] [CrossRef]
- Mine, A. Adhesive Dentistry in Prosthodontics: The Key to Open Minimal Intervention and Full-Digital Treatment. J. Prosthodont. Res. 2022, 66, vi–vii. [Google Scholar] [CrossRef]
- Kaczmarek, K.; Konieczny, B.; Siarkiewicz, P.; Leniart, A.; Lukomska-Szymanska, M.; Skrzypek, S.; Lapinska, B. Surface Characterization of Current Dental Ceramics Using Scanning Electron Microscopic and Atomic Force Microscopic Techniques. Coatings 2022, 12, 1122. [Google Scholar] [CrossRef]
- Grangeiro, M.T.V.; Rossi, N.R.; Barreto, L.A.L.; Bottino, M.A.; Tribst, J.P.M. Effect of Different Surface Treatments on the Bond Strength of the Hybrid Ceramic Characterization Layer. J. Adhes. Dent. 2021, 23, 429–435. [Google Scholar] [CrossRef]
- Lopes, G.R.S.; Ramos, N.C.; Grangeiro, M.T.V.; Matos, J.D.M.; Bottino, M.A.; Özcan, M.; Valandro, L.F.; Melo, R.M. Adhesion between Zirconia and Resin Cement: A Critical Evaluation of Testing Methodologies. J. Mech. Behav. Biomed. Mater. 2021, 120, 104547. [Google Scholar] [CrossRef] [PubMed]
- Tribst, J.; Anami, L.C.; Özcan, M.; Bottino, M.A.; Melo, R.M.; Saavedra, G. Self-Etching Primers vs Acid Conditioning: Impact on Bond Strength between Ceramics and Resin Cement. Oper. Dent. 2018, 43, 372–379. [Google Scholar] [CrossRef]
- Lung, C.Y.K.; Matinlinna, J.P. Aspects of Silane Coupling Agents and Surface Conditioning in Dentistry: An Overview. Dent. Mater. 2012, 28, 467–477. [Google Scholar] [CrossRef]
- Feitosa, F.A.; Tribst, J.P.; Araújo, R.M.; Pucci, C.R. Surface Etching and Silane Heating Using Er: YAG and Nd: YAG Lasers in Dental Ceramic Luted to Human Dentin. Int. J. Appl. Ceram. Technol. 2021, 18, 1408–1416. [Google Scholar] [CrossRef]
- Kim, Y.-R.; Kim, J.-H.; Son, S.-A.; Park, J.-K. Effect of Silane-Containing Universal Adhesives on the Bonding Strength of Lithium Disilicate. Materials 2021, 14, 3976. [Google Scholar] [CrossRef]
- Jusué-Esparza, G.; Rivera-Gonzaga, J.A.; Grazioli, G.; Monjarás-Ávila, A.J.; Zamarripa-Calderón, J.E.; Cuevas-Suárez, C.E. Influence of Silane Coupling Agent and Aging on the Repair Bond Strength of Dental Composites. J. Adhes. Sci. Technol. 2022, 1–10. [Google Scholar] [CrossRef]
- Cuzic, C.; Pricop, M.O.; Jivanescu, A.; Ursoniu, S.; Negru, R.M.; Romînu, M. Assessment of Different Techniques for Adhesive Cementation of All-Ceramic Systems. Medicina 2022, 58, 1006. [Google Scholar] [CrossRef]
- Prati, C.; Nucci, C.; Davidson, C.L.; Montanari, G. Early Marginal Leakage and Shear Bond Strength of Adhesive Restorative Systems. Dent. Mater. 1990, 6, 195–200. [Google Scholar] [CrossRef]
- Teixeira, G.S.; Pereira, G.K.R.; Susin, A.H. Aging Methods-an Evaluation of Their Influence on Bond Strength. Eur. J. Dent. 2021, 15, 448–453. [Google Scholar] [CrossRef]
- Gale, M.S.; Darvell, B.W. Thermal Cycling Procedures for Laboratory Testing of Dental Restorations. J. Dent. 1999, 27, 89–99. [Google Scholar] [CrossRef] [PubMed]
- Martins, J.D.; Moura, D.; Lima, C.M.; de Carvalho, R.; Leite, F.; Souza, R. Surface Treatment and Cementation of Lithium Silicate Ceramics Containing ZrO2. Oper. Dent. 2022, 47, 202–213. [Google Scholar] [CrossRef] [PubMed]
- Baldi, A.; Comba, A.; Ferrero, G.; Italia, E.; Michelotto Tempesta, R.; Paolone, G.; Mazzoni, A.; Breschi, L.; Scotti, N. External Gap Progression after Cyclic Fatigue of Adhesive Overlays and Crowns Made with High Translucency Zirconia or Lithium Silicate. J. Esthet. Restor. Dent. 2022, 34, 557–564. [Google Scholar] [CrossRef] [PubMed]
- Dal Piva, A.M.; Tribst, J.P.; Gondim, L.D.; Ribeiro, I.L.; Campos, F.; Arata, A.; Souza, R.O. Y-TZP Surface Behavior under Two Different Milling Systems and Three Different Accelerated Aging Protocols. Minerva Stomatol. 2018, 67, 237–245. [Google Scholar] [CrossRef] [PubMed]
- de Chaves, L.V.F.; de Medeiros, T.A.; Borges, B.C.D.; do Mainardi, M.C.A.J.; Catelan, A.; Aguiar, F.H.B. Influence of Aging Methods on Push-out Bond Strength of Adhesive Systems to Dentin Cavities. Appl. Adhes. Sci. 2017, 5, 1. [Google Scholar] [CrossRef] [Green Version]
- Scherrer, S.S.; Cesar, P.F.; Swain, M.V. Direct Comparison of the Bond Strength Results of the Different Test Methods: A Critical Literature Review. Dent. Mater. 2010, 26, e78–e93. [Google Scholar] [CrossRef] [PubMed]
- El Zohairy, A.A.; Saber, M.H.; Abdalla, A.I.; Feilzer, A.J. Efficacy of Microtensile versus Microshear Bond Testing for Evaluation of Bond Strength of Dental Adhesive Systems to Enamel. Dent. Mater. 2010, 26, 848–854. [Google Scholar] [CrossRef] [PubMed]
- Silveira, M.P.M.; de Ramos, N.C.; da Lopes, G.R.S.; Tribst, J.P.M.; Bottino, M.A. Bond Strength between Different Zirconia-Based Ceramics and Resin Cement before and after Aging. Coatings 2022, 12, 1601. [Google Scholar] [CrossRef]
- Tribst, J.P.M.; Alves, L.M.M.; de Piva, A.M.O.D.; de Melo, R.M.; Borges, A.L.S.; Paes-Junior, T.J.A.; Bottino, M.A. Reinforced Glass-Ceramics: Parametric Inspection of Three-Dimensional Wear and Volumetric Loss after Chewing Simulation. Braz. Dent. J. 2019, 30, 505–510. [Google Scholar] [CrossRef]
- Diniz, V.; Condé Oliveira Prado, P.H.; Meireles Rodrigues, J.V.; Monteiro, J.B.; Zucuni, C.; Valandro, L.F.; Melo, R.M. Ceramic Firing Protocols and Thermocycling: Effects on the Load-Bearing Capacity under Fatigue of a Bonded Zirconia Lithium Silicate Glass-Ceramic. J. Mech. Behav. Biomed. Mater. 2020, 110, 103963. [Google Scholar] [CrossRef] [PubMed]
- Diniz, V.; Monteiro, J.B.; Rodrigues, J.V.M.; Prado, P.H.C.O.; Melo, R.M. de Impact of Acid Concentration and Firing on the Long-Term Bond Strength of a Zirconia-Lithium Silicate Ceramic Following Adhesive Cementation. J. Adhes. Dent. 2019, 21, 355–363. [Google Scholar] [CrossRef] [PubMed]
- Lima, C.M.; da Silva, N.R.; Martins, J.D.; Miranda, J.S.; Tanaka, R.; de Souza, R.O.A.E.; Leite, F.P.P. Effect of Different Surface Treatments on the Biaxial Flexure Strength, Weibull Characteristics, Roughness, and Surface Topography of Bonded CAD/CAM Silica-Based Ceramics. Dent. Mater. 2021, 37, e151–e161. [Google Scholar] [CrossRef] [PubMed]
- Abdulkader, K.F.; Elnaggar, G.A.E.; Kheiralla, L.S. Shear Bond Strength of Cemented Zirconia-Reinforced Lithium Silicate Ceramics (Celtra Duo) with Two Surface Treatments (in Vitro Study). J. Adhes. Sci. Technol. 2021, 35, 35–51. [Google Scholar] [CrossRef]
- Wang, Y.; Hui, R.; Gao, L.; Ma, Y.; Wu, X.; Meng, Y.; Hao, Z. Effect of Surface Treatments on Bond Durability of Zirconia-Reinforced Lithium Silicate Ceramics: An in Vitro Study. J. Prosthet. Dent. 2022. [Google Scholar] [CrossRef]
- Xiang, Z.-X.; Chen, X.-P.; Song, X.-F.; Yin, L. Responses of Pre-Crystallized and Crystallized Zirconia-Containing Lithium Silicate Glass Ceramics to Diamond Machining. Ceram. Int. 2020, 46, 1924–1933. [Google Scholar] [CrossRef]
- Baiomy, A.A.; Younis, J.F.; Khalil, A.H. Shear Bond Strength of Composite Repair System to Bilayered Zirconia Using Different Surface Treatments (in Vitro Study). Braz. Dent. Sci. 2020, 23, 11. [Google Scholar] [CrossRef]
Material | Collective Name | Manufacturer | Composition | Batch Number |
---|---|---|---|---|
Celtra Duo | Zirconia-reinforced lithium silicate | Dentsply-Sirona, Bensheim, Germany | SiO2, P2O5, Al2O3, Li2O, K2O, ZrO2, CeO2, Na2O, Tb4O7, V2O5, Pr6O11, Cr, Cu, Fe, Mg, Mn, Si, Zn, Ti, Zr, and Al | 18029365 |
IPS e.max® CAD | Lithium disilicate glass-ceramics | Ivoclar Vivadent, Schaan, Liechtenstein | 57%–80% SiO2, 11%–19% Li2O, 0%–13% K2O, 0%–11% P2O5, 0%–8% ZrO2, 0%–8% ZnO, 0%–5% Al2O3, and 0%–5% MgO | U36613 |
Multilink® N | Universal luting composite system | Ivoclar Vivadent, Schaan, Liechtenstein | Dimethacrylate and HEMA, inorganic particles include barium glass, ethereber trifluoride, and mixed spheroidal oxides | W44613 |
Condac porcelana 5% | Low-viscosity gel containing hydrofluoric acid at 5% | FGM Produtos Odontológios, Joinville, SC, Brazil | 5% hydrofluoric acid, water, thickener, surfactant, and colorant | 290419 |
Monobond N | Universal primer | Ivoclar Vivadent, Schaan, Liechtenstein | Alcoholic solution of silane methacrylate, phosphoric acid, methacrylate, and sulphide methacrylate | Y33681 |
Firing Cycle ZLS (Celtra Duo) | |
---|---|
Initial chamber temperature | 400 °C |
Time at initial temperature | 8 min |
Temperature rate increase | 55 °C/min |
Firing temperature | 830 °C |
Holding time | 10 min |
Ending temperature | 700 °C |
Firing Cycle LD (IPS e.max® CAD) | |
---|---|
Initial chamber temperature | 403 °C |
Time at initial temperature | 6 min |
Temperature rate increase | 90 °C/min |
Firing temperature | 840 °C |
Holding time | 7 min |
Ending temperature | 700 °C |
df | SS | Ms | F | p-Value | |
---|---|---|---|---|---|
Thermocycling | 1 | 1444.9 | 1444.94 | 105.19 | 0.000 * |
Firing | 2 | 1020.9 | 510.46 | 37.16 | 0.000 * |
Thermocycling x firing | 2 | 536.5 | 268.25 | 19.53 | 0.000 * |
Error | 353 | 4848.9 | 13.74 | ||
Total | 358 | 7859.3 |
Group | Termocycling | Bond Strengths * |
---|---|---|
ZLS without firing | No | 25.43 (4.06) A |
Yes | 19.05 (3.50) C | |
ZLS with firing | No | 21.99 (3.85) B |
Yes | 16.97 (3.43) D | |
LD | No | 18.52 (3.76) CD |
Yes | 17.88 (3.58) CD |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodrigues, M.R.; Grangeiro, M.T.V.; Rossi, N.R.; de Carvalho Ramos, N.; de Carvalho, R.F.; Kimpara, E.T.; Tribst, J.P.M.; de Arruda Paes Junior, T.J. Influence of Optional Crystallization Firing on the Adhesion of Zirconia-Reinforced Lithium Silicate before and after Aging. Coatings 2022, 12, 1904. https://doi.org/10.3390/coatings12121904
Rodrigues MR, Grangeiro MTV, Rossi NR, de Carvalho Ramos N, de Carvalho RF, Kimpara ET, Tribst JPM, de Arruda Paes Junior TJ. Influence of Optional Crystallization Firing on the Adhesion of Zirconia-Reinforced Lithium Silicate before and after Aging. Coatings. 2022; 12(12):1904. https://doi.org/10.3390/coatings12121904
Chicago/Turabian StyleRodrigues, Murilo Rocha, Manassés Tercio Vieira Grangeiro, Natalia Rivoli Rossi, Nathalia de Carvalho Ramos, Rodrigo Furtado de Carvalho, Estevão Tomomitsu Kimpara, João Paulo Mendes Tribst, and Tarcisio José de Arruda Paes Junior. 2022. "Influence of Optional Crystallization Firing on the Adhesion of Zirconia-Reinforced Lithium Silicate before and after Aging" Coatings 12, no. 12: 1904. https://doi.org/10.3390/coatings12121904
APA StyleRodrigues, M. R., Grangeiro, M. T. V., Rossi, N. R., de Carvalho Ramos, N., de Carvalho, R. F., Kimpara, E. T., Tribst, J. P. M., & de Arruda Paes Junior, T. J. (2022). Influence of Optional Crystallization Firing on the Adhesion of Zirconia-Reinforced Lithium Silicate before and after Aging. Coatings, 12(12), 1904. https://doi.org/10.3390/coatings12121904