Effect of Heat Sealing and Storage on Mechanical and Barrier Properties of Maillard Modified Fish Skin Gelatin/L-arabinose Composite Films
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Preparation of Maillard Modified FG-Ara Composite Films
2.3. Determination of Heat-Sealing Strength
2.3.1. Single-Factor Experiments
2.3.2. Response Surface Optimization Test
2.4. Storage Stability of FG-Ara Composite Film Modified by the Maillard Reaction
2.4.1. Determination of Mechanical Properties
2.4.2. Water Vapor Transmittance (WVP)
2.5. Preparation and Storage of Modulated Milk Powder Packets
2.5.1. Wetting Time
2.5.2. Dispersion Time
2.5.3. Protein Dispersion Index
2.5.4. Insoluble Index
2.6. Preparation and Storage of Oil Packs
2.6.1. Evaluation of the Drop Test
2.6.2. Evaluation of Compressive Test
2.6.3. Determination of POV
2.6.4. Kinetic Analysis of POV
2.6.5. Establishment of Arrhenius Model
2.7. Statistical Analysis
3. Results and Discussion
3.1. The Results of Single Factor Test
3.2. Analysis of Response Surfaces and Verification of Predictive Model
3.3. Optimization and Verification of Sealing Strength Process Conditions
3.4. Storage Properties of FG-Ara Composite Film Modified by Maillard Reaction
3.4.1. Effect of Storage Conditions on Mechanical Properties
3.4.2. Effect of Storage Conditions on Barrier Performance
3.5. Effect of Storage Conditions on Milk Powder Quality
3.5.1. Effect of Storage Conditions on Soaking Time of Prepared Milk Powder
3.5.2. Effect of Storage Conditions on Dispersion Time of Prepared Milk Powder
3.5.3. Effect of Storage Conditions on Protein Dispersion Index of Prepared Milk Powder
3.5.4. Effect of Storage Conditions on Insoluble Index of Prepared Milk Powder
3.6. Preparation of Oil Bale and the Effect of Storage Conditions on Oil Bale
3.6.1. Evaluation of Drop Test
3.6.2. Evaluation of Compressive Test
3.6.3. Changes of POV during Soybean Oil Storage
- (1)
- Order Dynamic Model Analysis
- (2)
- Establishment of Arrhenius Prediction Model
- (3)
- Arrhenius Model Verification
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Groh, K.J.; Backhaus, T.; Carney-Almroth, B.; Geueke, B.; Inostroza, P.A.; Lennquist, A.; Muncke, J. Overview of known plastic packaging-associated chemicals and their hazards. Sci. Total Environ. 2019, 651, 3253–3268. [Google Scholar] [CrossRef] [PubMed]
- Galus, S.; Kadzińska, J. Food applications of emulsion-based edible films and coatings. Trends Food Sci. Technol. 2015, 45, 273–283. [Google Scholar] [CrossRef]
- Rangaraj, V.M.; Rambabu, K.; Banat, F.; Mittal, V. Natural antioxidants-based edible active food packaging: An overview of current advancements. Food Biosci. 2021, 43, 101251. [Google Scholar] [CrossRef]
- Haghighi, H.; Biard, S.; Bigi, F.; De Leo, R.; Bedin, E.; Pfeifer, F.; Siesler, H.W.; Licciardello, F.; Pulvirenti, A. Comprehensive characterization of active chitosan-gelatin blend films enriched with different essential oils. Food Hydrocoll. 2019, 95, 33–42. [Google Scholar] [CrossRef]
- Etxabide, A.; Uranga, J.; Guerrero, P.; De la Caba, K. Development of active gelatin films by means of valorisation of food processing waste: A review. Food Hydrocoll. 2017, 68, 192–198. [Google Scholar] [CrossRef]
- Wasswa, J.; Tang, R.; Gu, X.H. Utilization of fish processing by-products in the gelatin industry. Food Rev. Int. 2007, 23, 159–174. [Google Scholar] [CrossRef]
- Bhutani, U.; Laha, A.; Mitra, K.; Majumdar, S. Sodium alginate and gelatin hydrogels: Viscosity effect on hydrophobic drug release. Mater. Lett. 2016, 164, 76–79. [Google Scholar] [CrossRef]
- Li, Y.; Li, C.; Mujeeb, A.; Jin, Z.; Ge, Z. Optimization and characterization of chemically modified polymer microspheres and their effect on cell behavior. Mater. Lett. 2015, 154, 68–72. [Google Scholar] [CrossRef]
- Tokuda, N. Homoepitaxial diamond growth by plasma-enhanced chemical vapor deposition. In Novel Aspects of Diamond. Topics in Applied Physics; Yang, N., Ed.; Springer: Cham, Switzerland, 2019; Volume 121, pp. 1–29. [Google Scholar] [CrossRef]
- Lin, J.; Guo, X.; Ai, C.; Zhang, T.; Yu, S. Genipin crosslinked sugar beet pectin–whey protein isolate/bovine serum albumin conjugates with enhanced emulsifying properties. Food Hydrocoll. 2020, 105, 105802. [Google Scholar] [CrossRef]
- Lin, J.; Wang, Z.; Meng, H.; Guo, X. Genipin crosslinked gum arabic: Synthesis, characterization, and emulsification properties. Carbohydr. Polym. 2021, 261, 117880. [Google Scholar] [CrossRef]
- Siracusa, V.; Rocculi, P.; Romani, S.; Dalla Rosa, M. Biodegradable polymers for food packaging: A review. Trends Food Sci. Technol. 2008, 19, 634–643. [Google Scholar] [CrossRef]
- Lin, J.; Yu, S.; Ai, C.; Zhang, T.; Guo, X. Emulsion stability of sugar beet pectin increased by genipin crosslinking. Food Hydrocoll. 2020, 101, 105459. [Google Scholar] [CrossRef]
- Zhao, H.; Kang, X.; Zhou, X.; Tong, L.; Yu, W.; Zhang, J.; Yang, W.; Lou, Q.; Huang, T. Glycosylation fish gelatin with gum Arabic: Functional and structural properties. LWT Food Sci. Technol. 2021, 139, 110634. [Google Scholar] [CrossRef]
- An, K.; Liu, H.; Guo, S.; Kumar, D.N.T.; Wang, Q. Preparation of fish gelatin and fish gelatin/poly(l-lactide) nanofibers by electrospinning. Int. J. Biol. Macromol. 2010, 47, 380–388. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Hu, Q.; Wu, Y.; Pei, F.; Kimatu, B.M.; Su, A.; Yang, W. Storage time assessment and shelf-life prediction models for postharvest Agaricus Bisporus. Lebensm. Wiss. Technol. 2018, 101, 360–365. [Google Scholar] [CrossRef]
- Ooi, L.G.; Liong, M.T. Cholesterol-lowering effects of probiotics and prebiotics: A review of in vivo and in vitro findings. Int. J. Mol. Sci. 2010, 11, 2499–2522. [Google Scholar] [CrossRef] [Green Version]
- Osaki, S.; Kimura, T.; Sugimoto, T.; Hizukuri, S.; Iritani, N. L-arabinose feeding prevents increases due to dietary sucrose in lipogenic enzymes and triacylglycerol levels in rats. J. Nutr. 2001, 131, 796–799. [Google Scholar] [CrossRef] [Green Version]
- Fujii, M.; Hatozoe, M.; Hou, D.X.; Sanada, H.; Osaki, S.; Hizukuri, S. Effects of L-arabinose on serum neutral lipid, weights of fat pads and cecum, and on organic acids in cecum in rats. J. Appl. Glycosci. 2000, 47, 355–361. [Google Scholar] [CrossRef]
- Mu, Y.; Hang, L.; Zhao, G.; Wang, X.; Zhou, Y.; Cheng, Z. Modeling and simulation for the investigation of polymer film casting process using finite element method. Math. Comput. Simul. (MATCOM) 2020, 169, 88–102. [Google Scholar] [CrossRef]
- Lim, S.L.; Rosli, W. Nutritional composition and lipid oxidation stability of beef patties packed with biodegradable and non-biodegradable materials. Sains Malays. 2014, 43, 1197–1203. [Google Scholar]
- ASTM. E96-93 Standard Test Methods for Water-Vapor Transmission of Materials; Annual Book of ASTM Standards; American Society for Testing and Materials: Philadelphia, PA, USA, 1993. [Google Scholar]
- Gontard, N.; Guilbert, S.; Cuq, J.L. Edible wheat gluten films: Influence of the main process variables on film properties using Response Surface Methodology. J. Food Sci. 1992, 57, 190–196. [Google Scholar] [CrossRef]
- Mchugh, T.H. Effects of Chemical Properties and Physical Structure on Mass Transfer in Whey Protein-Based Edible Film Systems; University of California: Los Angeles, CA, USA, 1993. [Google Scholar]
- Schuck, P.; Mejean, S.; Dolivet, A.; Gaiani, C.; Banon, S.; Scher, J.; Jeantet, R. Water transfer during rehydration of micellar casein powders. Le Lait 2007, 87, 425–432. [Google Scholar] [CrossRef] [Green Version]
- Rangaraj, V.M.; Rambabu, K.; Banat, F.; Mittal, V. Effect of date fruit waste extract as an antioxidant additive on the properties of active gelatin films. Food Chem. 2021, 355, 129631. [Google Scholar] [CrossRef] [PubMed]
- Yildiz, E.; Bayram, I.; Sumnu, G.; Sahin, S.; Ibis, O.I. Development of pea flour based active films produced through different homogenization methods and their effects on lipid oxidation. Food Hydrocoll. 2021, 111, 106238. [Google Scholar] [CrossRef]
- Yang, X.; Liu, Y.; Chen, J.; Lv, Y.; Luo, Y. Quality Attributes and Shelf Life Modeling of Pacific White Shrimp (Litopenaeus vannamei) Stored at Different Temperatures. J. Aquat. Food Prod. Technol. 2018, 27, 998–1008. [Google Scholar] [CrossRef]
- Gennadios, A.; Ghorpade, V.M.; Weller, C.L.; Hanna, M.A. Heat curing of soy protein films. Trans. Asae 1996, 39, 575–579. [Google Scholar] [CrossRef] [Green Version]
- Nelson, K.; Labuza, T. Water activity and food polymer science: Implications of state on Arrhenius and WLF models in predicting shelf life. J. Food Eng. 1994, 22, 271–289. [Google Scholar] [CrossRef]
- Guerrero, P.; Leceta, I.; Penalba, M.; Caba, K. Optical and mechanical properties of thin films based on proteins. Mater. Lett. 2014, 124, 286–288. [Google Scholar] [CrossRef]
- Wang, Z.-C.; Qin, C.-Q.; Zhang, X.; Wang, Q.; Li, R.-X.; Ren, D.-F. Effect of whey protein isolate/chitosan/microcrystalline cellulose/PET multilayer bottles on the shelf life of rosebud beverages. Food Chem. 2021, 347, 129006. [Google Scholar] [CrossRef]
- Lim, W.S.; Ock, S.Y.; Park, G.D.; Lee, I.W.; Park, H.J. Heat-sealing property of cassava starch film plasticized with glycerol and sorbitol. Food Packag. Shelf Life 2020, 26, 100556. [Google Scholar] [CrossRef]
- Mazzola, N.; Cáceres, C.A.; França, M.P.; Canevarolo, V.S. Correlation between thermal behavior of a sealant and heat sealing of polyolefin films. Polym. Test. 2012, 31, 870–875. [Google Scholar] [CrossRef]
- Das, M.; Chowdhury, T. Heat sealing property of starch based self-supporting edible films. Food Packag. Shelf Life 2016, 9, 64–68. [Google Scholar] [CrossRef]
- Su, J.F.; Yuan, X.Y.; Huang, Z.; Xia, W.L. Properties stability and biodegradation behaviors of soy protein isolate/poly (vinyl alcohol) blend films. Polym. Degrad. Stab. 2010, 95, 1226–1237. [Google Scholar] [CrossRef]
- Guerrero, P.; Hanani, Z.A.N.; Kerry, J.P.; de la Caba, K. Characterization of soy protein-based films prepared with acids and oils by compression. J. Food Eng. 2011, 107, 41–49. [Google Scholar] [CrossRef]
- Nazmi, N.N.; Isa, M.I.N.; Sarbon, N.M. Preparation and characterization of chicken skin gelatin/CMC composite film as compared to bovine gelatin film. Food Biosci. 2017, 19, 149–155. [Google Scholar] [CrossRef]
- Tongnuanchan, P.; Benjakul, S.; Prodpran, T.; Songtipya, P. Properties and Stability of Protein-based Films from Red Tilapia (Oreochromis niloticus) Protein Isolate Incorporated with Antioxidant during Storage. Food Bioprocess Technol. 2013, 6, 1113–1126. [Google Scholar] [CrossRef]
- Chinma, C.E.; Ariahu, C.C.; Abu, J.O. Development and characterization of cassava starch and soy protein concentrate based edible films. Int. J. Food Sci. Technol. 2012, 47, 383–389. [Google Scholar] [CrossRef]
- Brown, E.; Ma, C.; Acharya, J.; Ma, B.; Wu, J.; Li, J. Controlling Dielectric and Relaxor-Ferroelectric Properties for Energy Storage by Tuning Pb0.92La0.08Zr0.52Ti0.48O3 Film Thickness. ACS Appl. Mater. Interfaces 2014, 6, 22417–22422. [Google Scholar] [CrossRef]
- Tongnuanchan, P.; Benjakul, S.; Prodpran, T. Roles of lipid oxidation and pH on properties and yellow discolouration during storage of film from red tilapia (Oreochromis niloticus) muscle protein. Food Hydrocoll. 2011, 25, 426–433. [Google Scholar] [CrossRef]
- Rambabu, K.; Bharath, G.; Banat, F.; Loke, P.; Hernández, H. Mango leaf extract incorporated chitosan antioxidant film for active food packaging. Int. J. Biol. Macromol. 2019, 126, 1234–1243. [Google Scholar] [CrossRef]
- Freitas, P.A.; Silva, R.R.; de Oliveira, T.V.; Soares, R.R.; Junior, N.S.; Moraes, A.R.; Pires, A.C.D.S.; Soares, N.F. Development and characterization of intelligent cellulose acetate-based films using red cabbage extract for visual detection of volatile bases. LWT 2020, 132, 109780. [Google Scholar] [CrossRef]
- Zhang, W.; Luo, Z.; Wang, A.; Gu, X.; Lv, Z. Kinetic models applied to quality change and shelf life prediction of kiwifruits. LWT 2020, 138, 110610. [Google Scholar] [CrossRef]
- Li, D.; Xie, H.; Liu, Z.; Li, A.; Li, J.; Liu, B.; Liu, X.; Zhou, D. Shelf life prediction and changes in lipid profiles of dried shrimp (Penaeus vannamei) during accelerated storage. Food Chem. 2019, 297, 124951. [Google Scholar] [CrossRef] [PubMed]
- Bravi, E.; Sileoni, V.; Perretti, G.; Marconi, O. Accelerated shelf-life model of gluten-free rusks by using oxidation indices. Food Chem. 2020, 326, 126971. [Google Scholar] [CrossRef]
- Kchaou, H.; Benbettaieb, N.; Jridi, M.; Nasri, M.; Debeaufort, F. Influence of Maillard reaction and temperature on functional, structure and bioactive properties of fish gelatin films. Food Hydrocoll. 2019, 97, 105196. [Google Scholar] [CrossRef]
- Oh, S.; Park, J.; Nam, J.; Hyun, Y.; Jin, H.-J.; Kwak, H.W. Antioxidant and UV-blocking glucose-crosslinked sericin films with enhanced structural integrity. React. Funct. Polym. 2021, 165. [Google Scholar] [CrossRef]
- Granda-Restrepo, D.; Peralta, E.; Troncoso-Rojas, R.; Soto-Valdez, H. Release of antioxidants from co-extruded active packaging developed for whole milk powder. Int. Dairy J. 2009, 19, 481–488. [Google Scholar] [CrossRef]
Factor | Code | Code Level | ||
---|---|---|---|---|
−1 | 0 | 1 | ||
Vacuum time | A | 5.0 | 7.0 | 9.0 |
Heat-sealing time | B | 2.0 | 2.5 | 3.0 |
Cooling time | C | 2.0 | 3.0 | 4.0 |
Reaction Order | 0 | 1 | 2 |
---|---|---|---|
Quality function F(A) | A–A0 | Ln(A/A0) | L/(n − 1)(A01−n–A1−n) |
Test Number | A: Vacuum Time | B: Heat-Sealing Time | C: Cool-Down Time | Sealing Strength (N/15 mm) |
---|---|---|---|---|
1 | 1 | 0 | −1 | 6.13 |
2 | 1 | −1 | 0 | 6.66 |
3 | 0 | 0 | 0 | 5.40 |
4 | −1 | 0 | 1 | 6.76 |
5 | 1 | 0 | 1 | 6.77 |
6 | −1 | 0 | −1 | 5.55 |
7 | 0 | 0 | 0 | 6.52 |
8 | 0 | 0 | 0 | 6.82 |
9 | 0 | 1 | −1 | 6.25 |
10 | 0 | 0 | 0 | 5.39 |
11 | 1 | 1 | 0 | 6.60 |
12 | −1 | 1 | 0 | 5.10 |
13 | 0 | 1 | 1 | 6.22 |
14 | 0 | 0 | 0 | 6.75 |
15 | 0 | −1 | −1 | 5.85 |
16 | −1 | −1 | 0 | 6.76 |
17 | 0 | −1 | 1 | 5.14 |
Source | Sum of Squares | Freedom | Mean Square | F Value | p-Value |
---|---|---|---|---|---|
Model | 6.23 | 9 | 0.69 | 115.82 | <0.0001 ** |
A | 1.44 | 1 | 1.44 | 240.80 | <0.0001 ** |
B | 0.93 | 1 | 0.93 | 155.50 | <0.0001 ** |
C | 0.18 | 1 | 0.18 | 29.92 | 0.0009 ** |
AB | 0.21 | 1 | 0.21 | 34.88 | 0.0006 ** |
AC | 8.10 × 10−3 | 1 | 8.10 × 10−3 | 1.36 | 0.2825 |
BC | 4.00 × 10−4 | 1 | 4.00 × 10−4 | 0.067 | 0.8033 |
A2 | 0.15 | 1 | 0.15 | 25.07 | 0.0016 ** |
B2 | 0.20 | 1 | 0.20 | 33.99 | 0.0006 ** |
C2 | 2.91 | 1 | 2.91 | 487.58 | <0.0001 ** |
C2 | 2.91 | 1 | 2.91 | 487.58 | <0.0001 ** |
Residual | 0.042 | 7 | 5.97 × 10−3 | - | - |
Misfit | 0.034 | 3 | 0.011 | 5.37 | <0.0691 |
Pure error | 8.321 × 10−4 | 4 | 2.08 × 10−5 | - | - |
Total deviation | 6.27 | 16 | - | - | - |
Storage Conditions | WVP20d | WVP40d | WVP60d | WVP80d | WVP100d | WVP120d |
---|---|---|---|---|---|---|
RH 43% | 13.01 ± 4.23 F | 41.43 ± 10.33 E | 70.12 ± 15.31 D | 90.36 ± 18.37 C | 105.86 ± 20.85 B | 121.26 ± 22.38 A |
RH 54% | 47.80 ± 0.84 F | 120.31 ± 2.73 E | 199.99 ± 4.64 D | 248.95 ± 5.05 C | 297.10 ± 3.81 B | 322.11 ± 4.32 A |
RH 65% | 44.09 ± 8.62 F | 131.47 ± 11.97 E | 240.90 ± 19.18 D | 294.60 ± 29.62 C | 310.21 ± 30.38 B | 379.36 ± 18.69 A |
4 °C | 8.16 ± 1.50 E | 13.81 ± 1.07 E | 24.17 ± 3.19 D | 30.01 ± 2.93 C | 34.17 ± 3.33 B | 39.57 ± 3.09 A |
−17 °C | 9.82 ± 3.21 F | 11.42 ± 5.01 E | 16.73 ± 11.03 D | 20.61 ± 15.2 C | 23.53 ± 15.52 B | 26.95 ± 18.50 A |
Packing Material | Temperature/°C | Regression Equation | k | R2 |
---|---|---|---|---|
BOPP-PE | 25 °C | y = 0.301e0.02239x | 0.02666003 | R2 = 0.9492 |
4 °C | y = 0.2691e0.0154x | 0.016804181 | R2 = 0.9339 | |
−17 °C | y = 0.1827e0.0143x | 0.014939658 | R2 = 0.9545 | |
FG-Ara | 25 °C | y = 0.2502e0.0181x | 0.119442956 | R2 = 0.9604 |
4 °C | y = 0.2634e0.0153x | 0.017536026 | R2 = 0.9379 | |
−17 °C | y = 0.1916e0.0155x | 0.015662590 | R2 = 0.9580 |
Packing Material | Temperature/°C (K) | 1/T | Lnk |
---|---|---|---|
BOPP-PE | 25 °C (298.15) | 0.0033540 | −3.624589842 |
4 °C (277.15) | 0.0036082 | −4.015846265 | |
−17 °C (256.15) | 0.0039039 | −4.379312057 | |
FG-Ara | 25 °C (298.15) | 0.0033540 | −3.916675848 |
4 °C (277.15) | 0.0036082 | −4.043497866 | |
−17 °C (256.15) | 0.0039039 | −4.156480185 |
Packing Material | POV (mmol/kg) | Actual Storage Time (d) | Estimated Days (d) | SE |
---|---|---|---|---|
BOPP-PE | 0.40 ± 0.17 | 20 | 24.47 | 0.18 |
0.52 ± 0.06 | 30 | 33.60 | 0.10 | |
0.68 ± 0.06 | 40 | 42.89 | 0.06 | |
FG-Ara | 0.31 ± 0.10 | 20 | 23.78 | 0.15 |
0.39 ± 0.09 | 30 | 34.43 | 0.12 | |
0.42 ± 0.05 | 40 | 43.32 | 0.07 |
Packing Material | Storage Temperature (°C) | Estimated Storage Time (d) |
---|---|---|
BOPP-PE | 25 | 148.4084351 |
4 | 210.1593997 | |
−17 | 314.9964312 | |
FG-Ara | 25 | 196.8612664 |
4 | 219.8575097 | |
−17 | 250.0089675 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, Q.; Zhang, Q.; Chen, F.; Yin, L. Effect of Heat Sealing and Storage on Mechanical and Barrier Properties of Maillard Modified Fish Skin Gelatin/L-arabinose Composite Films. Coatings 2022, 12, 1929. https://doi.org/10.3390/coatings12121929
Zheng Q, Zhang Q, Chen F, Yin L. Effect of Heat Sealing and Storage on Mechanical and Barrier Properties of Maillard Modified Fish Skin Gelatin/L-arabinose Composite Films. Coatings. 2022; 12(12):1929. https://doi.org/10.3390/coatings12121929
Chicago/Turabian StyleZheng, Qiankun, Qiang Zhang, Fusheng Chen, and Lijun Yin. 2022. "Effect of Heat Sealing and Storage on Mechanical and Barrier Properties of Maillard Modified Fish Skin Gelatin/L-arabinose Composite Films" Coatings 12, no. 12: 1929. https://doi.org/10.3390/coatings12121929
APA StyleZheng, Q., Zhang, Q., Chen, F., & Yin, L. (2022). Effect of Heat Sealing and Storage on Mechanical and Barrier Properties of Maillard Modified Fish Skin Gelatin/L-arabinose Composite Films. Coatings, 12(12), 1929. https://doi.org/10.3390/coatings12121929