A Mini-Review on Preparation of Functional Composite Fibers and Their Based Devices
Abstract
:1. Introduction
2. Preparation of Functional Composite Fiber
2.1. Functionalization of Fiber
2.2. Direct Preparation of Composite Fibers
3. Functionalized Composite Fiber-Based Devices
3.1. Sensing Devices
3.1.1. Gas Sensor
3.1.2. Pollution Sensor
3.1.3. Ultraviolet Sensor
3.1.4. Temperature and Humidity Sensor
3.1.5. Pressure Sensor
3.1.6. Strain Sensor
3.2. Environmental Devices
3.3. Energy Devices
4. Conclusions and Outlooks
- (1)
- For composite fiber preparation: Composite fibers remain a relatively expensive material used in specific special applications. Developing low-cost fiber preparation technology is significant for large-scale practical daily life applications.
- (2)
- For the design of functional composite fibers: Flexibility of fiber-based devices is essential for improving their performance and exhibiting reliability and stability for target applications. Novel composite fibers need to be designed to obtain high-performance, multifunctional, and stable flexible devices to fulfill various requirements.
- (3)
- For fiber-based devices: There are plentiful opportunities to diversify flexible devices with reconfigurable sizes, shapes, and properties. Advanced preparation technologies, structure and device designs, and device assembly methods need to be developed to prepare more fantastic functional composite fibers to fulfill various requirements in environmental and energy applications, such as different wearable sensors, pollution removal, air and water filtration, lithium-ion batteries, wire-shaped supercapacitors, self-powered devices and solar cells.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhou, G.; Wang, Y.-Q.; Byun, J.-H.; Yi, J.-W.; Yoon, S.-S.; Cha, H.-J.; Lee, J.-U.; Oh, Y.; Jung, B.-M.; Moon, H.-J.; et al. High-Strength Single-Walled Carbon Nanotube/Permalloy Nanoparticle/Poly(vinyl alcohol) Multifunctional Nanocomposite Fiber. ACS Nano 2015, 9, 11414–11421. [Google Scholar] [CrossRef] [PubMed]
- Ren, J.; Bai, W.; Guan, G.; Zhang, Y.; Peng, H. Flexible and Weaveable Capacitor Wire Based on a Carbon Nanocomposite Fiber. Adv. Mater. 2013, 25, 5965–5970. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Sun, H.; Chen, T.; Qiu, L.; Luo, Y.; Peng, H. Photovoltaic wire derived from a graphene composite fiber achieving an 8.45% energy conversion efficiency. Angew. Chem. 2013, 52, 7545–7548. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; He, Z.; Zhou, G.; Jung, B.M.; Kim, T.H.; Park, B.J.; Byun, J.H.; Chou, T.W. High conductive free-written thermoplastic polyurethane composite fibers utilized as weight-strain sensors. Compos. Sci. Technol. 2020, 189, 108011. [Google Scholar] [CrossRef]
- Lee, S.; Shin, S.; Lee, S.; Seo, J.; Lee, J.; Son, S.; Cho, H.J.; Algadi, H.; AlSayari, S.; Kim, D.E. Ag nanowire reinforced highly stretchable conductive fibers for wearable electronics. Adv. Funct. Mater. 2015, 25, 3114–3121. [Google Scholar] [CrossRef]
- Meng, Y.; Zhao, Y.; Hu, C.; Cheng, H.; Hu, Y.; Zhang, Z.; Shi, G.; Qu, L. All-Graphene Core-Sheath Microfibers for All-Solid-State, Stretchable Fibriform Supercapacitors and Wearable Electronic Textiles. Adv. Mater. 2013, 25, 2326–2331. [Google Scholar] [CrossRef]
- Wang, H.; Liu, Z.; Ding, J.; Lepró, X.; Fang, S.; Jiang, N.; Yuan, N.; Wang, R.; Yin, Q.; Lv, W.; et al. Downsized sheath–core conducting fibers for weavable superelastic wires, biosensors, supercapacitors, and strain sensors. Adv. Mater. 2016, 28, 4946. [Google Scholar] [CrossRef] [Green Version]
- Floreani, C.; Robert, C.; Alam, P.; Davies, P.; Brádaigh, C. Mixed-Mode Interlaminar Fracture Toughness of Glass and Carbon Fibre Powder Epoxy Composites—For Design of Wind and Tidal Turbine Blades. Materials 2021, 14, 2103. [Google Scholar] [CrossRef]
- Verma, A.; Negi, P.; Singh, V.K. Physical and Thermal Characterization of Chicken Feather Fiber and Crumb Rubber Reformed Epoxy Resin Hybrid Composite. Adv. Civ. Eng. Mater. 2018, 7, 538–557. [Google Scholar] [CrossRef]
- Verma, A.; Singh, C.; Singh, V.; Jain, N. Fabrication and characterization of chitosan-coated sisal fiber—Phytagel modified soy protein-based green composite. J. Compos. Mater. 2019, 53, 2481–2504. [Google Scholar] [CrossRef]
- Kuschmitz, S.; Schirp, A.; Busse, J.; Watschke, H.; Schirp, C.; Vietor, T. Development and Processing of Continuous Flax and Carbon Fiber-Reinforced Thermoplastic Composites by a Modified Material Extrusion Process. Materials 2021, 14, 2332. [Google Scholar] [CrossRef] [PubMed]
- Verma, A.; Gaur, A.; Singh, V.K. Mechanical Properties and Microstructure of Starch and Sisal Fiber Biocomposite Modified with Epoxy Resin. Mater. Perform. Charact. 2017, 6, 20170069. [Google Scholar] [CrossRef]
- Jost, K.; Stenger, D.; Perez, C.R.; McDonough, J.K.; Lian, K.; Gogotsi, Y.; Dion, G. Knitted and screen printed carbon-fiber supercapacitors for applications in wearable electronics. Energy Environ. Sci. 2013, 6, 2698–2705. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, L.; Yang, T.; Li, X.; Zang, X.; Zhu, M.; Wang, K.; Wu, D.; Zhu, H. Wearable and Highly Sensitive Graphene Strain Sensors for Human Motion Monitoring. Adv. Funct. Mater. 2014, 24, 4666–4670. [Google Scholar] [CrossRef]
- Verma, A.; Parashar, A.; Jain, N.; Singh, V.K.; Rangappa, S.M.; Siengchin, S. Surface Modification Techniques for the Preparation of Different Novel Biofibers for Composites. In Biofibers and Biopolymers for Biocomposites Synthesis, Characterization and Properties; Khan, A., Mavinkere Rangappa, S., Siengchin, S., Asiri, A.M., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 1–34. [Google Scholar] [CrossRef]
- Ding, T.; Chan, K.H.; Zhou, Y.; Wang, X.-Q.; Cheng, Y.; Li, T.; Ho, G.W. Scalable thermoelectric fibers for multifunctional textile-electronics. Nat. Commun. 2020, 11, 6006. [Google Scholar] [CrossRef]
- Verma, A.; Singh, V.K. Mechanical, Microstructural and Thermal Characterization of Epoxy-Based Human Hair–Reinforced Composites. J. Test. Eval. 2018, 47, 1193–1215. [Google Scholar] [CrossRef]
- Kamedulski, P.; Lukaszewicz, J.; Witczak, L.; Szroeder, P.; Ziolkowski, P. The Importance of Structural Factors for the Electrochemical Performance of Graphene/Carbon Nanotube/Melamine Powders towards the Catalytic Activity of Oxygen Reduction Reaction. Materials 2021, 14, 2448. [Google Scholar] [CrossRef]
- Liu, L.; Yu, Y.; Yan, C.; Li, K.; Zheng, Z. Wearable energy-dense and power-dense supercapacitor yarns enabled by scalable graphene–metallic textile composite electrodes. Nat. Commun. 2015, 6, 7260. [Google Scholar] [CrossRef] [Green Version]
- Khalid, B.; Bai, X.; Wei, H.; Huang, Y.; Wu, H.; Cui, Y. Direct Blow-Spinning of Nanofibers on a Window Screen for Highly Efficient PM2.5 Removal. Nano Lett. 2017, 17, 1140–1148. [Google Scholar] [CrossRef]
- Kweon, O.Y.; Lee, S.J.; Oh, J.H. Wearable high-performance pressure sensors based on three-dimensional electrospun conductive nanofibers. NPG Asia Mater. 2018, 10, 540–551. [Google Scholar] [CrossRef]
- Zeng, W.; Shu, L.; Li, Q.; Chen, S.; Wang, F.; Tao, X.M. Fiber-Based Wearable Electronics: A Review of Materials, Fabrication, Devices, and Applications. Adv. Mater. 2014, 26, 5310–5336. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.-Q.; Kan, C.-W. Review on Development and Application of 3D-Printing Technology in Textile and Fashion Design. Coatings 2022, 12, 267. [Google Scholar] [CrossRef]
- Li, J.; Yang, Z.; Zhao, Y.; Li, X.; Wei, W.; Li, H.; Tu, C.; Chen, Q.; Yin, G.; Wu, G. Improving carbon/carbon composites mechanical and thermal properties by the co-carbonization of pre-oxidized carbon fiber and pitch. J. Appl. Polym. Sci. 2022, 139, 51846. [Google Scholar] [CrossRef]
- Liu, T.; Wang, Y.; Zhou, J.; Li, M.; Yue, J. Preparation of Molded Fiber Products from Hydroxylated Lignin Compounded with Lewis Acid-Modified Fibers Its Analysis. Polymers 2021, 13, 1349. [Google Scholar] [CrossRef] [PubMed]
- Hao, Z.; Shen, J.; Sheng, X.; Shen, Z.; Yang, L.; Lu, X.; Luo, Z.; Zheng, Q. Enhancing Performances of Polyamide 66 Short Fiber/Natural Rubber Composites via In Situ Vulcanization Reaction. Fibers Polym. 2020, 21, 392–398. [Google Scholar] [CrossRef]
- Alonso-Montemayor, F.J.; Navarro-Rodriguez, D.; Delgado-Aguilar, M.; Neira-Velazquez, M.G.; Aguilar, C.N.; Castaneda-Facio, A.O.; Reyes-Acosta, Y.K.; Narro-Cespedes, R.I. Plasma-treated lignocellulosic fibers for polymer reinforcement. A review. Cellulose 2022, 29, 659–683. [Google Scholar] [CrossRef]
- Wang, Z.; Huang, Y.; Sun, J.; Chunyi, Z.; Jiang, R.; Gai, W.; Li, G.; Zhi, C. Polyurethane/Cotton/Carbon Nanotubes Core-Spun Yarn as High Reliability Stretchable Strain Sensor for Human Motion Detection. ACS Appl. Mater. Interfaces 2016, 8, 24837–24843. [Google Scholar] [CrossRef]
- Wu, D.; Yao, Z.; Sun, X.; Liu, X.; Liu, L.; Zhang, R.; Wang, C. Mussel-tailored carbon fiber/carbon nanotubes interface for elevated interfacial properties of carbon fiber/epoxy composites. Chem. Eng. J. 2022, 429, 132449. [Google Scholar] [CrossRef]
- Altin, Y.; Yilmaz, H.; Unsal, O.F.; Bedeloglu, A.C. Graphene oxide modified carbon fiber reinforced epoxy composites. J. Polym. Eng. 2020, 40, 415–420. [Google Scholar] [CrossRef]
- Yang, L.; Xia, H.; Xu, Z.; Lihua, Z.; Ni, Q. Influence of surface modification of carbon fiber based on magnetron sputtering technology on mechanical properties of carbon fiber composites. Mater. Res. Express 2020, 7, 105602. [Google Scholar] [CrossRef]
- Wu, C.; Wang, H.; Li, Y.; Kim, T.; Kwon, S.J.; Park, B.; He, Z.; Lee, S.-B.; Um, M.-K.; Byun, J.-H.; et al. Sensitivity Improvement of Stretchable Strain Sensors by the Internal and External Structural Designs for Strain Redistribution. ACS Appl. Mater. Interfaces 2020, 12, 50803–50811. [Google Scholar] [CrossRef] [PubMed]
- Qu, M.; Schubert, D.W. Conductivity of melt spun PMMA composites with aligned carbon fibers. Compos. Sci. Technol. 2016, 136, 111–118. [Google Scholar] [CrossRef]
- Feng, P.; Liu, D.; Zhang, R.; Yang, C. Distribution of the polymer melt velocity and temperature in the spinneret channel of bi-component fibre melt spinning: A mathematical model. Fibres Text. East. Eur. 2021, 29, 49–53. [Google Scholar]
- He, Z.; Byun, J.-H.; Zhou, G.; Park, B.-J.; Kim, T.-H.; Lee, S.-B.; Yi, J.-W.; Um, M.-K.; Chou, T.-W. Effect of MWCNT content on the mechanical and strain-sensing performance of Thermoplastic Polyurethane composite fibers. Carbon 2019, 146, 701–708. [Google Scholar] [CrossRef]
- Yu, D.; Goh, K.; Wang, H.; Wei, L.; Jiang, W.; Zhang, Q.; Dai, L.; Chen, Y. Scalable synthesis of hierarchically structured carbon nanotube–graphene fibres for capacitive energy storage. Nat. Nanotechnol. 2014, 15, 811. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Li, J.; Wang, K.; Yang, G.; Cao, Y.; Huang, B.; Wu, X.; Sun, Q.; Ma, C.; Zhao, L.; et al. Dry-jet wet spinning and encapsulating for preparing multifunctional fibers based on anti-Rayleigh-Plateau-Instability solution. Colloids Surf. A Physicochem. Eng. Asp. 2022, 638, 128240. [Google Scholar] [CrossRef]
- Yue, C.; Ding, C.; Du, X.; Cheng, B. Novel collagen/GO-MWNT hybrid fibers with improved strength and toughness by dry-jet wet spinning. Compos. Interfaces 2021, 29, 413–429. [Google Scholar] [CrossRef]
- Wang, C.; Sun, S.; Zhang, L.; Yin, J.; Jiao, T.; Zhang, L.; Xu, Y.; Zhou, J.; Peng, Q. Facile preparation and catalytic performance characterization of AuNPs-loaded hierarchical electrospun composite fibers by solvent vapor annealing treatment. Colloids Surf. A 2019, 561, 283–291. [Google Scholar] [CrossRef]
- Wang, X.-X.; Yu, G.-F.; Zhang, J.; Yu, M.; Ramakrishna, S.; Long, Y.-Z. Conductive polymer ultrafine fibers via electrospinning: Preparation, physical properties and applications. Prog. Mater. Sci. 2021, 115, 100704. [Google Scholar] [CrossRef]
- He, Z.; Zhou, G.; Byun, J.-H.; Lee, S.-K.; Um, M.-K.; Park, B.; Kim, T.; Chou, T.-W. Highly stretchable multi-walled carbon nanotube/thermoplastic polyurethane composite fibers for ultrasensitive, wearable strain sensors. Nanoscale 2019, 11, 5884–5890. [Google Scholar] [CrossRef]
- Tang, Z.; Jia, S.; Wang, F.; Bian, C.; Chen, Y.; Wang, Y.; Li, B. Highly Stretchable Core–Sheath Fibers via Wet-Spinning for Wearable Strain Sensors. ACS Appl. Mater. Interfaces 2018, 10, 6624–6635. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Xu, X.; Xin, Y.; Lubineau, G. Coaxial thermoplastic elastomer-wrapped carbon nanotube fibers for deformable and wearable strain sensors. Adv. Funct. Mater. 2018, 28, 1705591. [Google Scholar] [CrossRef]
- Kou, L.; Huang, T.; Zheng, B.; Han, Y.; Zhao, X.; Gopalsamy, K.; Sun, H.; Gao, C. Coaxial wet-spun yarn supercapacitors for high-energy density and safe wearable electronics. Nat. Commun. 2014, 5, 3754. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, D.; Steckl, A.J. Coaxial electrospinning formation of complex polymer fibers and their applications. Chempluschem 2019, 84, 1453–1497. [Google Scholar] [CrossRef] [PubMed]
- Yoon, J.; Yang, H.-S.; Lee, B.-S.; Yu, W.-R. Recent Progress in Coaxial Electrospinning: New Parameters, Various Structures, and Wide Applications. Adv. Mater. 2018, 30, e1704765. [Google Scholar] [CrossRef] [PubMed]
- Cho, S.-Y.; Yu, H.; Choi, J.; Kang, H.; Park, S.; Jang, J.-S.; Hong, H.-J.; Kim, I.-D.; Lee, S.-K.; Jeong, H.S.; et al. Continuous Meter-Scale Synthesis of Weavable Tunicate Cellulose/Carbon Nanotube Fibers for High-Performance Wearable Sensors. ACS Nano 2019, 13, 9332–9341. [Google Scholar] [CrossRef]
- Zhong, N.; Wu, Y.; Wang, Z.; Chang, H.; Zhong, D.; Xu, Y.; Hu, X.; Huang, L. Monitoring Microalgal Biofilm Growth and Phenol Degradation with Fiber-Optic Sensors. Anal. Chem. 2019, 91, 15155–15162. [Google Scholar] [CrossRef]
- Kim, S.J.; Moon, D.-I.; Seol, M.-L.; Kim, B.; Han, J.-W.; Meyyappan, M. Wearable UV Sensor Based on Carbon Nanotube-Coated Cotton Thread. ACS Appl. Mater. Interfaces 2018, 10, 40198–40202. [Google Scholar] [CrossRef]
- Leal-Junior, A.; Frizera-Neto, A.; Marques, C.; Pontes, M.J. Measurement of Temperature and Relative Humidity with Polymer Optical Fiber Sensors Based on the Induced Stress-Optic Effect. Sensors 2018, 18, 916. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.; Kwon, H.; Seo, J.; Shin, S.; Koo, J.H.; Pang, C.; Son, S.; Kim, J.H.; Jang, Y.H.; Kim, D.E.; et al. Conductive fiber-based ultrasensitive textile pressure sensor for wearable electronics. Adv. Mater. 2015, 27, 2433–2439. [Google Scholar] [CrossRef]
- Seyedin, S.; Zhang, P.; Naebe, M.; Qin, S.; Chen, J.; Wang, X.; Razal, J.M. Textile strain sensors: A review of the fabrication technologies, performance evaluation and applications. Mater. Horiz. 2019, 6, 219–249. [Google Scholar] [CrossRef]
- Ye, X.; Tian, M.; Li, M.; Wang, H.; Shi, Y. All-Fabric-Based Flexible Capacitive Sensors with Pressure Detection and Non-Contact Instruction Capability. Coatings 2022, 12, 302. [Google Scholar] [CrossRef]
- Zhang, K.; Huo, Q.; Zhou, Y.Y.; Wang, H.H.; Li, G.P.; Wang, Y.W.; Wang, Y.Y. Textiles/metal-organic frameworks composites as flexible air filters for efficient particulate matter removal. ACS Appl. Mater. Interfaces 2019, 11, 17368–17374. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wang, B.; Wang, Q.; Di, J.; Miao, S.; Yu, J. Amino-functionalized porous nanofibrous membranes for simultaneous removal of oil and heavy-metal ions from wastewater. ACS Appl. Mater. Interfaces 2019, 11, 1672–1679. [Google Scholar] [CrossRef]
- Zhao, J.; Zhu, W.; Wang, X.; Liu, L.; Yu, J.; Ding, B. Environmentally benign modification of breathable nanofibrous membranes exhibiting superior waterproof and photocatalytic self-cleaning properties. Nanoscale Horiz. 2019, 4, 867–873. [Google Scholar] [CrossRef]
- Zhang, Y.; Duoerkun, G.; Shi, Z.; Cao, W.; Liu, T.; Liu, J.; Zhang, L.; Li, M.; Chen, Z. Construction of TiO2/Ag3PO4 nanojunctions on carbon fiber cloth for photocatalytically removing various organic pollutants in static or flowing wastewater. J. Colloid Interface Sci. 2020, 571, 213–221. [Google Scholar] [CrossRef]
- Lee, M.Y.; Ringe, S.; Kim, H.; Kang, S.; Kwon, Y. Electric field mediated selectivity switching of electrochemical CO2 reduction from formate to CO on carbon supported Sn. ACS Energy Lett. 2020, 5, 2987–2994. [Google Scholar] [CrossRef]
- Miao, J.; Xiao, F.-X.; Bin Yang, H.; Khoo, S.Y.; Chen, J.; Fan, Z.; Hsu, Y.-Y.; Chen, H.M.; Zhang, H.; Liu, B. Hierarchical Ni-Mo-S nanosheets on carbon fiber cloth: A flexible electrode for efficient hydrogen generation in neutral electrolyte. Sci. Adv. 2015, 1, e1500259. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Li, Q.; Yang, D.; An, X.; Qian, X. Phytic Acid Doped Polyaniline as a Binding Coating Promoting Growth of Prussian Blue on Cotton Fibers for Adsorption of Copper Ions. Coatings 2022, 12, 138. [Google Scholar] [CrossRef]
- Zhang, J.; Li, X.; Guo, J.; Zhou, G.H.; Xiang, L.; Wang, S.G.; He, Z.L. Novel TiO2/TPU composite fiber-based smart textiles for photocatalytic applications. Mater. Adv. 2022, 3, 1518–1526. [Google Scholar] [CrossRef]
- Ren, J.; Li, L.; Chen, C.; Chen, X.; Cai, Z.; Qiu, L.; Wang, Y.; Zhu, X.; Peng, H. Twisting carbon nanotube fibers for both wire-shaped micro-supercapacitor and micro-battery. Adv. Mater. 2013, 25, 1155–1159. [Google Scholar] [CrossRef] [PubMed]
- Deng, J.; Qiu, L.; Lu, X.; Yang, Z.; Guan, G.; Zhang, Z.; Peng, H. Elastic perovskite solar cells. J. Mater. Chem. A 2015, 3, 21070–21076. [Google Scholar] [CrossRef]
- He, X.; Zi, Y.; Guo, H.; Zheng, H.; Xi, Y.; Wu, C.; Wang, J.; Zhang, W.; Lu, C.; Wang, Z.L. A Highly Stretchable Fiber-Based Triboelectric Nanogenerator for Self-Powered Wearable Electronics. Adv. Funct. Mater. 2017, 27, 1604378. [Google Scholar] [CrossRef]
- Li, M.; Zu, M.; Yu, J.; Cheng, H.; Li, Q. Stretchable fiber supercapacitors with high volumetric performance based on buckled MnO2/oxidized carbon nanotube fiber electrodes. Small 2017, 13, 1602994. [Google Scholar] [CrossRef]
- Chen, L.; Yin, H.; Zhou, Y.; Dai, H.; Yu, T.; Liu, J.; Zou, Z. In situ direct growth of single crystalline metal (Co, Ni) selenium nanosheets on metal fibers as counter electrodes toward low-cost, high-performance fiber-shaped dye-sensitized solar cells. Nanoscale 2016, 8, 2304–2308. [Google Scholar] [CrossRef]
- Wang, Y.-H.; Fang, H.-Q.; Dong, Q.; Si, D.-H.; Song, X.-D.; Yu, C.; Qiu, J.-S. Coaxial heterojunction carbon nanofibers with charge transport and electrocatalytic reduction phases for high performance dye-sensitized solar cells. RSC Adv. 2018, 8, 7040–7043. [Google Scholar] [CrossRef] [Green Version]
- Yang, Z.; Jia, Y.; Niu, Y.; Yong, Z.; Wu, K.; Zhang, C.; Zhu, M.; Zhang, Y.; Li, Q. Wet-spun PVDF nanofiber separator for direct fabrication of coaxial fiber-shaped supercapacitors. Chem. Eng. J. 2020, 400, 125835. [Google Scholar] [CrossRef]
- Yang, Y.; Xie, L.; Wen, Z.; Chen, C.; Chen, X.; Wei, A.; Cheng, P.; Xie, X.; Sun, X. Coaxial Triboelectric Nanogenerator and Supercapacitor Fiber-Based Self-Charging Power Fabric. ACS Appl. Mater. Interfaces 2018, 10, 42356–42362. [Google Scholar] [CrossRef]
- Zeng, T.; Feng, D.; Liu, Q.; Zhou, R. Confining nano-GeP in nitrogenous hollow carbon fibers toward flexible and high-performance lithium-ion batteries. ACS Appl. Mater. Interfaces 2021, 13, 32978–32988. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qu, K.-A.; Chen, W.; Guo, J.; He, Z. A Mini-Review on Preparation of Functional Composite Fibers and Their Based Devices. Coatings 2022, 12, 473. https://doi.org/10.3390/coatings12040473
Qu K-A, Chen W, Guo J, He Z. A Mini-Review on Preparation of Functional Composite Fibers and Their Based Devices. Coatings. 2022; 12(4):473. https://doi.org/10.3390/coatings12040473
Chicago/Turabian StyleQu, Kongyu-Ang, Wenhan Chen, Jian Guo, and Zuoli He. 2022. "A Mini-Review on Preparation of Functional Composite Fibers and Their Based Devices" Coatings 12, no. 4: 473. https://doi.org/10.3390/coatings12040473
APA StyleQu, K. -A., Chen, W., Guo, J., & He, Z. (2022). A Mini-Review on Preparation of Functional Composite Fibers and Their Based Devices. Coatings, 12(4), 473. https://doi.org/10.3390/coatings12040473