Durability of Acrylic Cataphoretic Coatings Additivated with Colloidal Silver
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Deposition of Acrylic–Ag Coatings
2.3. Characterization
3. Results
3.1. Coating Morphology
3.2. Salt Spray Chamber
3.3. Electrochemical Impedance Spectroscopy Measurements
3.4. Exposure to UV-B Radiation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abdellah, A.; Fabel, B.; Lugli, P.; Scarpa, G. Spray deposition of organic semiconducting thin-films: Towards the fabrication of arbitrary shaped organic electronic devices. Org. Electron. 2010, 11, 1031–1038. [Google Scholar] [CrossRef]
- Aleksandrova, M.; Andreev, S.; Kolev, G. Spray deposition of organic electroluminescent coatings for application in flexible light emitting devices. Cogent Eng. 2015, 2, 1014248. [Google Scholar] [CrossRef]
- Girotto, C.; Rand, B.P.; Genoe, J.; Heremans, P. Exploring spray coating as a deposition technique for the fabrication of solution-processed solar cells. Sol. Energy Mater. Sol. Cells 2009, 93, 454–458. [Google Scholar] [CrossRef]
- Sparks, B.J.; Hoff, E.F.T.; Xiong, L.; Goetz, J.T.; Patton, D.L. Superhydrophobic Hybrid inorganic–organic thiol-ene surfaces fabricated via spray-deposition and photopolymerization. ACS Appl. Mater. Interfaces 2013, 5, 1811–1817. [Google Scholar] [CrossRef] [PubMed]
- Ramdé, T.; Ecco, L.G.; Rossi, S. Visual appearance durability as function of natural and accelerated ageing of electrophoretic styrene-acrylic coatings: Influence of yellow pigment concentration. Prog. Org. Coat. 2017, 103, 23–32. [Google Scholar] [CrossRef]
- Deflorian, F.; Rossi, S.; Prosseda, S. Improvement of corrosion protection system for aluminium body bus used in public transportation. Mater. Des. 2006, 27, 758–769. [Google Scholar] [CrossRef]
- Rossi, S.; Calovi, M.; Fedel, M. Corrosion protection of aluminum foams by cataphoretic deposition of organic coatings. Prog. Org. Coat. 2017, 109, 144–151. [Google Scholar] [CrossRef]
- Karacal, P.N.; Elginoz, N.; Babuna, F.G. Environmental burdens of cataphoresis process. Desalin. W. Treat. 2019, 172, 301–308. [Google Scholar] [CrossRef]
- Almeida, E.; Alves, I.; Brites, C.; Fedrizzi, L. Cataphoretic and autophoretic automotive primers: A comparative study. Prog. Org. Coat. 2003, 46, 8–20. [Google Scholar] [CrossRef]
- Skotnicki, W.; Jędrzejczyk, D. The comparative analysis of the coatings deposited on the automotive parts by the cataphoresis method. Materials 2021, 14, 6155. [Google Scholar] [CrossRef]
- Youssouf, H.; Azzouzi, S.R.; Reklaoui, K. Control of the “Cataphoresis” Process by Artificial Intelligence. In Proceedings of the Advances in Intelligent Systems and Computing, Marrakech, Morocco, 8–11 July 2019; pp. 169–188. [Google Scholar]
- Hylák, K.; Matuška, Z.; Drašnar, P.; Kudláček, J.; Horník, J. Development of equipment for mass cataphoresis painting. Mater. Sci. Forum 2019, 952, 92–98. [Google Scholar] [CrossRef]
- Benato, A. Improving the efficiency of a cataphoresis oven with a cogenerative organic Rankine cycle unit. Therm. Sci. Eng. Prog. 2018, 5, 182–194. [Google Scholar] [CrossRef]
- García, S.; Rodríguez, M.T.; Izquierdo, R.; Suay, J. Evaluation of cure temperature effects in cataphoretic automotive primers by electrochemical techniques. Prog. Org. Coat. 2007, 60, 303–311. [Google Scholar] [CrossRef]
- García, S.; Suay, J. Optimization of deposition voltage of cataphoretic automotive primers assessed by EIS and AC/DC/AC. Prog. Org. Coat. 2009, 66, 306–313. [Google Scholar] [CrossRef]
- Araújo, E.; Rodrigues, M.A.; Viana, A.; Viana, R. The influence of glycerol as an additive in Zinc-Manganese alloy coatings formed by electrodeposition. Acta Sci. Technol. 2019, 41, 41103. [Google Scholar] [CrossRef] [Green Version]
- Bučko, M.; Mišković-Stanković, V.; Rogan, J.; Bajat, J.B. The protective properties of epoxy coating electrodeposited on Zn-Mn alloy substrate. Prog. Org. Coat. 2015, 79, 8–16. [Google Scholar] [CrossRef]
- Szklarska, M.; Łosiewicz, B.; Dercz, G.; Maszybrocka, J.; Rams-Baron, M.; Stach, S. Electrophoretic deposition of chitosan coatings on the Ti15Mo biomedical alloy from a citric acid solution. RSC Adv. 2020, 10, 13386–13393. [Google Scholar] [CrossRef] [Green Version]
- Zanella, C.; Pedrotti, A.; Fedel, M.; Deflorian, F. Influence of the electrochemical behavior of metal substrates on the properties of cataphoretic clearcoat. Prog. Org. Coat. 2014, 77, 1987–1992. [Google Scholar] [CrossRef]
- Živković, L.S.; Bajat, J.B.; Popić, J.P.; Jegdić, B.V.; Stevanović, S.; Mišković-Stanković, V.B. Protective properties of cataphoretic epoxy coating on aluminium alloy AA6060 modified with electrodeposited Ce-based coatings: Effect of post-treatment. Prog. Org. Coat. 2015, 79, 43–52. [Google Scholar] [CrossRef]
- Romano, A.P.; Olivier, M.G.; Nazarov, A.; Thierry, D. Influence of crosslinking density of a cataphoretic coating on initiation and propagation of filiform corrosion of AA6016. Prog. Org. Coat. 2009, 66, 173–182. [Google Scholar] [CrossRef]
- Reichinger, M.; Bremser, W.; Dornbusch, M. Interface and volume transport on technical cataphoretic painting: A comparison of steel, hot-dip galvanised steel and aluminium alloy. Electrochim. Acta 2017, 231, 135–152. [Google Scholar] [CrossRef]
- Romano, A.-P.; Fedel, M.; Deflorian, F.; Olivier, M.G. Silane sol–gel film as pretreatment for improvement of barrier properties and filiform corrosion resistance of 6016 aluminium alloy covered by cataphoretic coating. Prog. Org. Coat. 2011, 72, 695–702. [Google Scholar] [CrossRef]
- Fedel, M. Effect of sol–gel layers obtained from GLYMO/MTES mixtures on the delamination of a cataphoretic paint on AA1050. J. Coat. Technol. Res. 2017, 14, 425–435. [Google Scholar] [CrossRef]
- Zivkovic, L.S.; Jegdjc, B.V.; Andric, V.; Rhee, K.Y.; Bajat, J.B.; Miakovjc Stankovic, V. The effect of ceria and zirconia nanoparticles on the corrosion behaviour of cataphoretic epoxy coatings on AA6060 alloy. Prog. Org. Coat. 2019, 136, 105219. [Google Scholar] [CrossRef]
- Jegdić, B.V.; Živković, L.S.; Popić, J.P.; Rogan, J.; Bajat, J.B.; Mišković-Stanković, V.B. Corrosion stability of cerium-doped cataphoretic epoxy coatings on AA6060 alloy. Mater. Corros. 2016, 67, 1173–1184. [Google Scholar] [CrossRef]
- Rossi, S.; Calovi, M. Addition of graphene oxide plates in cataphoretic deposited organic coatings. Prog. Org. Coat. 2018, 125, 40–47. [Google Scholar] [CrossRef]
- Calovi, M.; Dirè, S.; Ceccato, R.; Deflorian, F.; Rossi, S. Corrosion protection properties of functionalised graphene–acrylate coatings produced via cataphoretic deposition. Prog. Org. Coat. 2019, 136, 105261. [Google Scholar] [CrossRef]
- Calovi, M.; Rossi, S.; Deflorian, F.; Dirè, S.; Ceccato, R. Effect of functionalized graphene oxide concentration on the corrosion resistance properties provided by cataphoretic acrylic coatings. Mater. Chem. Phys. 2019, 239, 121984. [Google Scholar] [CrossRef]
- Calovi, M.; Rossi, S.; Deflorian, F.; Dirè, S.; Ceccato, R.; Guo, X.; Frankel, G.S. Effects of graphene-based fillers on cathodic delamination and abrasion resistance of cataphoretic organic coatings. Coatings 2020, 10, 602. [Google Scholar] [CrossRef]
- Calovi, M.; Russo, F.; Rossi, S. Synergic behavior of graphene-based filler and thermochromic pigments in cataphoretic coatings. Prog. Org. Coat. 2021, 150, 105978. [Google Scholar] [CrossRef]
- Calovi, M.; Russo, F.; Rossi, S. Esthetic performance of thermochromic pigments in cataphoretic and sprayed coatings for outdoor applications. J. Appl. Polym. Sci. 2021, 138, 50622. [Google Scholar] [CrossRef]
- El-Faham, A.; Atta, A.M.; Osman, S.M.; Ezzat, A.O.; El-saeed, A.M.; Al Othman, Z.A.; Al-Lohedan, H.A. Silver-embedded epoxy nanocomposites as organic coatings for steel. Prog. Org. Coat. 2018, 123, 209–222. [Google Scholar] [CrossRef]
- Giraldo Mejía, H.F.; Herrera Seitz, K.; Valdés, M.; Uheida, A.; Procaccini, R.A.; Pellice, S.A. Antibacterial performance of hybrid nanocomposite coatings containing clay and silver nanoparticles. Colloids Surf. A Physicochem. Eng. Asp. 2021, 628, 127354. [Google Scholar] [CrossRef]
- Rozilah, A.; Aiza Jaafar, C.N.; Sapuan, S.M.; Zainol, I.; Ilyas, R.A. The effects of silver nanoparticles compositions on the mechanical, physiochemical, antibacterial, and morphology properties of sugar palm starch biocomposites for antibacterial coating. Polymers 2020, 12, 2605. [Google Scholar] [CrossRef]
- Rai, N.K.; Ashok, A.; Akondi, B.R. Consequences of chemical impact of disinfectants: Safe preventive measures against COVID-19. Crit. Rev. Toxicol. 2020, 50, 513–520. [Google Scholar] [CrossRef] [PubMed]
- Russell, A.; Hugo, W. 7 antimicrobial activity and action of silver. Prog. Med. Chem. 1994, 31, 351–370. [Google Scholar] [PubMed]
- Karunagaran, V.; Rajendran, K.; Sen, S. Antimicrobial activity of biosynthesized silver oxide nanoparticles. J. Pure Appl. Microbiol. 2014, 4, 3263–3268. [Google Scholar]
- Swathy, J.R.; Sankar, M.U.; Chaudhary, A.; Aigal, S.; Anshup; Pradeep, T. Antimicrobial silver: An unprecedented anion effect. Sci. Rep. 2014, 4, 7161. [Google Scholar] [CrossRef] [Green Version]
- Schneider, G. Antimicrobial silver nanoparticles–Regulatory situation in the European Union. Mater. Today Proc. 2017, 4, S200–S207. [Google Scholar] [CrossRef]
- Yin, I.; Zhang, J.; Zhao, I.; Mei, M.L.; Li, Q.; Chu, C.-H. The Antibacterial mechanism of silver nanoparticles and its application in dentistry. Int. J. Nanomed. 2020, 15, 2555–2562. [Google Scholar] [CrossRef] [Green Version]
- Vimbela, G.; Sang, N.; Fraze, C.; Yang, L.; Stout, D. Antibacterial properties and toxicity from metallic nanomaterials [Corrigendum]. Int. J. Nanomed. 2018, 13, 6497–6498. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Noronha, V.T.; Paula, A.J.; Durán, G.; Galembeck, A.; Cogo-Müller, K.; Franz-Montan, M.; Duran, N. Silver nanoparticles in dentistry. Dent. Mater. 2017, 33, 1110–1126. [Google Scholar] [CrossRef] [PubMed]
- Gonzalo-Juan, I.; Xie, F.; Becker, M.; Tulyaganov, D.U.; Ionescu, E.; Lauterbach, S.; De Angelis Rigotti, F.; Fischer, A.; Riedel, R. Synthesis of silver modified bioactive glassy materials with antibacterial properties via facile and low-temperature route. Materials 2020, 13, 5115. [Google Scholar] [CrossRef] [PubMed]
- da Silva, L.C.A.; Neto, F.G.; Pimentel, S.S.C.; Palácios, R.d.S.; Sato, F.; Retamiro, K.M.; Fernandes, N.S.; Nakamura, C.V.; Pedrochi, F.; Steimacher, A. The role of Ag2O on antibacterial and bioactive properties of borate glasses. J. Non-Cryst. Sol. 2021, 554, 120611. [Google Scholar] [CrossRef]
- Dharmaraj, D.; Krishnamoorthy, M.; Rajendran, K.; Karuppiah, K.; Annamalai, J.; Durairaj, K.R.; Santhiyagu, P.; Ethiraj, K. Antibacterial and cytotoxicity activities of biosynthesized silver oxide (Ag2O) nanoparticles using Bacillus paramycoides. J. Drug Deliv. Sci. Technol. 2021, 61, 102111. [Google Scholar] [CrossRef]
- Agbe, H.; Sarkar, D.K.; Chen, X.G. Electrochemically synthesized silver phosphate coating on anodized aluminum with superior antibacterial properties. Surf. Coat. Technol. 2021, 428, 127892. [Google Scholar] [CrossRef]
- Calovi, M.; Furlan, B.; Coroneo, V.; Massidda, O.; Rossi, S. Facile route to effective antimicrobial aluminum oxide layer realized by co-deposition with silver nitrate. Coatings 2022, 12, 28. [Google Scholar] [CrossRef]
- Dehghan, F.; Mardanpour, H.; Kamali, S.; Alirezaei, S. Synthesis and antibacterial properties of novel Al2O3-Ag anodised composite coating. Mater. Technol. 2021, 36, 721–730. [Google Scholar] [CrossRef]
- Zhang, L.; Li, B.; Zhang, X.; Wang, D.; Zhou, L.; Li, H.; Liang, C.; Liu, S.; Wang, H. Biological and antibacterial properties of TiO2 coatings containing Ca/P/Ag by one-step and two-step methods. Biomed. Microdevices 2020, 22, 24. [Google Scholar] [CrossRef]
- Chen, D.; Li, Y.; He, H.; Li, W.; Zeng, R.; Wang, X. Covalent incorporation of Ag nanoparticles into TiO2 nanotubes on Ti6Al4V by molecular grafting for enhancing antibacterial effect. Surf. Coat. Technol. 2021, 426, 127773. [Google Scholar] [CrossRef]
- Makowski, T.; Svyntkivska, M.; Piorkowska, E.; Mizerska, U.; Fortuniak, W.; Kowalczyk, D.; Brzezinski, S.; Kregiel, D. Antibacterial electroconductive composite coating of cotton fabric. Materials 2022, 15, 1072. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Li, W.; Wang, W.; Zhao, Y.; Chen, M. Microstructure, corrosion resistance, and antibacterial properties of an Ag/Mg-Al layered double hydroxide coating synthesized in situ on biomedical Mg-Zn-Ca alloy. Ceram. Int. 2022, 48, 4172–4187. [Google Scholar] [CrossRef]
- Ganguli, P.; Chaudhuri, S. Nanomaterials in antimicrobial paints and coatings to prevent biodegradation of man-made surfaces: A review. Mater. Today Proc. 2020, 45, 3769–3777. [Google Scholar] [CrossRef]
- Abdullayev, E.; Sakakibara, K.; Okamoto, K.; Wei, W.; Ariga, K.; Lvov, Y. Natural tubule clay template synthesis of silver nanorods for antibacterial composite coating. ACS Appl. Mater. Interfaces 2011, 3, 4040–4046. [Google Scholar] [CrossRef] [PubMed]
- Cheng, L.; Ren, S.; Lu, X. Application of eco-friendlywaterborne polyurethane composite coating incorporated with nano cellulose crystalline and silver nano particles on wood antibacterial board. Polymers 2020, 12, 407. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yan, X.; Pan, P. Preparation of silver antibacterial agents with different forms and their effects on the properties of water-based primer on tilia europaea surface. Coatings 2021, 11, 1066. [Google Scholar] [CrossRef]
- Wang, L.; Porto, C.L.; Palumbo, F.; Modic, M.; Cvelbar, U.; Ghobeira, R.; De Geyter, N.; De Vrieze, M.; Serša, G.; Leys, C.; et al. Synthesis of antibacterial composite coating containing nanocapsules in an atmospheric pressure plasma. Mater. Sci. Eng. C 2021, 119, 111496. [Google Scholar] [CrossRef]
- Lateef, A.; Azeez, M.A.; Asafa, T.B.; Yekeen, T.A.; Akinboro, A.; Oladipo, I.C.; Azeez, L.; Ajibade, S.E.; Ojo, S.A.; Gueguim-Kana, E.B.; et al. Biogenic synthesis of silver nanoparticles using a pod extract of Cola nitida: Antibacterial and antioxidant activities and application as a paint additive. J. Taibah Univ. Sci. 2016, 10, 551–562. [Google Scholar] [CrossRef] [Green Version]
- Deya, C.; Bellotti, N. Biosynthesized silver nanoparticles to control fungal infections in indoor environments. Adv. Nat.Sci. Nanosci. Nanotechnol. 2017, 8, 025005. [Google Scholar] [CrossRef] [Green Version]
- Barberia-Roque, L.; Gámez-Espinosa, E.; Viera, M.; Bellotti, N. Assessment of three plant extracts to obtain silver nanoparticles as alternative additives to control biodeterioration of coatings. Int. Biodeterior. Biodegrad. 2019, 141, 52–61. [Google Scholar] [CrossRef]
- Liu, S.; He, J.; Xue, J.; Ding, W. Efficient fabrication of transparent antimicrobial poly(vinyl alcohol) thin films. J. Nanopart. Res. 2009, 11, 553–560. [Google Scholar] [CrossRef]
- Bechtold, M.; Valério, A.; Souza, A.; Oliveira, D.; Franco, C.; Serafim, R.; Guelli Souza, S. Synthesis and application of silver nanoparticles as biocidal agent in polyurethane coating. J. Coat. Technol. Res. 2020, 17, 613–620. [Google Scholar] [CrossRef]
- Asafa, T.; Odediji, R.; Salaudeen, T.; Lateef, A.; Durowoju, M.; Azeez, M.; Yekeen, T.; Oladipo, I.; Irshad, H.M.; Hakeem, A. Physico-mechanical properties of emulsion paint embedded with silver nanoparticles. Bull. Mater. Sci. 2021, 44, 7. [Google Scholar] [CrossRef]
- Ohashi, F.; Shibahara, A. Antibacterial and antifungal properties of clear coating film containing silver–cytokinin complex as a filler. J. Coat. Technol. Res. 2020, 17, 1619–1623. [Google Scholar] [CrossRef]
- ASTM B117:2011; Operating Salt Spray (Fog) Apparatus. ASTM: West Conshohocken, PA, USA, 2011; pp. 1–12.
- ASTM G154:16; Standard Practice for Operating Fluorescent Ultraviolet (UV) Lamp Apparatus for Exposure of Nonmetallic Materials. ASTM: West Conshohocken, PA, USA, 2016.
- ISO 4628; Evaluation of Degradation of Coatings. ISO: Geneva, Switzerland, 2012.
- Deflorian, F.; Rossi, S. An EIS study of ion diffusion through organic coatings. Electrochim. Acta 2006, 51, 1736–1744. [Google Scholar] [CrossRef]
- Amirudin, A.; Thieny, D. Application of electrochemical impedance spectroscopy to study the degradation of polymer-coated metals. Prog. Org. Coat. 1995, 26, 1–28. [Google Scholar] [CrossRef]
- Akbarinezhad, E.; Bahremandi, M.; Faridi, H.; Rezaei, F. Another approach for ranking and evaluating organic paint coatings via electrochemical impedance spectroscopy. Corros. Sci. 2009, 51, 356–363. [Google Scholar] [CrossRef]
- Ghazizadeh, A.; Haddadi, S.A.; Mahdavian, M. The effect of sol–gel surface modified silver nanoparticles on the protective properties of the epoxy coating. RSC Adv. 2016, 6, 18996–19006. [Google Scholar] [CrossRef]
- Iannucci, L.; Parvis, M.; Sangermano, M.; Angelini, E.; Grassini, S. Rivestimenti ibridi organico-inorganici per la protezione dalla corrosione. La Metall. Ital. 2020, 11, 60–63. [Google Scholar]
- Procaccini, R.; Bouchet, A.; Pastore, J.I.; Studdert, C.; Ceré, S.; Pellice, S. Silver-functionalized methyl-silica hybrid materials as antibacterial coatings on surgical-grade stainless steel. Prog. Org. Coat. 2016, 97, 28–36. [Google Scholar] [CrossRef]
- Anghelone, M.; Jembrih-Simbürger, D.; Schreiner, M. Influence of phthalocyanine pigments on the photo-degradation of alkyd artists’ paints under different conditions of artificial solar radiation. Polym. Degrad. Stab. 2016, 134, 157–168. [Google Scholar] [CrossRef]
- Gulmine, J.; Janissek, P.; Heise, H.; Akcelrud, L. Degradation profile of polyethylene after artificial accelerated weathering. Polym. Degrad. Stab. 2003, 79, 385–397. [Google Scholar] [CrossRef]
- Chiantore, O.; Trossarelli, L.; Lazzari, M. Photooxidative degradation of acrylic and methacrylic polymers. Polymer 2000, 41, 1657–1668. [Google Scholar] [CrossRef]
- Kaczmarek, H.; Kamińska, A.; van Herk, A. Photooxidative degradation of poly (alkyl methacrylate) s. Eur. Polym. J. 2000, 36, 767–777. [Google Scholar] [CrossRef]
- Mittelman, A.M.; Fortner, J.D.; Pennell, K.D. Effects of ultraviolet light on silver nanoparticle mobility and dissolution. Environ. Sci. Nano 2015, 2, 683–691. [Google Scholar] [CrossRef]
- Odzak, N.; Kistler, D.; Sigg, L. Influence of daylight on the fate of silver and zinc oxide nanoparticles in natural aquatic environments. Environ. Pollut. 2017, 226, 1–11. [Google Scholar] [CrossRef]
- Lin, C.-C.; Lin, D.-X.; Lin, S.-H. Degradation problem in silver nanowire transparent electrodes caused by ultraviolet exposure. Nanotechnology 2020, 31, 215705. [Google Scholar] [CrossRef]
- ASTM E308-18; Standard Practice for Computing the Colors of Objectives by Using the CIE System. ASTM: West Conshohocken, PA, USA, 2018.
- Hasani, M.; Mahdavian, M.; Yari, H.; Ramezanzadeh, B. Versatile protection of exterior coatings by the aid of graphene oxide nano-sheets; comparison with conventional UV absorbers. Prog. Org. Coat. 2018, 116, 90–101. [Google Scholar] [CrossRef]
- Herley, P.J.; Prout, E. The thermal decomposition of silver oxide. J. Am. Chem. Soc. 1960, 82, 1540–1543. [Google Scholar] [CrossRef]
Bath | Colloidal Silver Concentration (wt.%) | Sample Nomenclature |
---|---|---|
Clear coat | 0.00 | A |
0.05 | A1 | |
0.10 | A2 |
Sample | Thickness [µm] | St. Dev. [µm] |
---|---|---|
A | 22.2 | 0.8 |
A1 | 23.4 | 1.0 |
A2 | 21.7 | 1.3 |
A | A1 | A2 | |||||||
---|---|---|---|---|---|---|---|---|---|
Time [h] | L* | a* | b* | L* | a* | b* | L* | a* | b* |
0 | 48.26 | 0.11 | 2.26 | 43.61 | 0.77 | 17.96 | 38.01 | 6.3 | 19.32 |
100 | 47.43 | −0.18 | 2.64 | 42.48 | 2.95 | 14.88 | 34.97 | 10.23 | 14.65 |
200 | 47.18 | −0.44 | 3.47 | 41.36 | 2.76 | 13.21 | 34.65 | 9.2 | 13.71 |
300 | 47.02 | −0.47 | 3.89 | 41.06 | 2.68 | 12.71 | 33.41 | 9.83 | 11.68 |
400 | 47.37 | −0.47 | 4.44 | 41.06 | 2.31 | 11.86 | 34.4 | 7.59 | 9.36 |
500 | 46.79 | −0.4 | 4.85 | 40.95 | 2.2 | 11.12 | 35.89 | 6.13 | 8.45 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Calovi, M.; Rossi, S. Durability of Acrylic Cataphoretic Coatings Additivated with Colloidal Silver. Coatings 2022, 12, 486. https://doi.org/10.3390/coatings12040486
Calovi M, Rossi S. Durability of Acrylic Cataphoretic Coatings Additivated with Colloidal Silver. Coatings. 2022; 12(4):486. https://doi.org/10.3390/coatings12040486
Chicago/Turabian StyleCalovi, Massimo, and Stefano Rossi. 2022. "Durability of Acrylic Cataphoretic Coatings Additivated with Colloidal Silver" Coatings 12, no. 4: 486. https://doi.org/10.3390/coatings12040486
APA StyleCalovi, M., & Rossi, S. (2022). Durability of Acrylic Cataphoretic Coatings Additivated with Colloidal Silver. Coatings, 12(4), 486. https://doi.org/10.3390/coatings12040486