Prospects and Challenges of Flexible Stretchable Electrodes for Electronics
Abstract
:1. Introduction
2. Concept, Performance, and Functional Adjustment of Flexible Stretchable Electrode
2.1. Concept
2.2. Performance
2.3. Functional Adjustment
3. Varieties of Flexible Stretchable Electrode Substrate Materials
3.1. Carbon-Based Electrode Materials
3.2. Polymer-Based Electrode Material
3.3. Electrode Materials with Other Substrates
4. Flexible Stretchable Structure
Structure | Material | Wear-and-Tear Life | Ultimate Tensile Rate | Reference |
---|---|---|---|---|
Spiral | CNTs yarn/MnO2/PPy | Maintain 88% capacitance after 200 cycles of stretching under 20% strain | 20% | [120] |
Spiral | Stainless steel wire/MnO2/rGO | Maintain 95% capacitance after 3000 cycles under 400% strain | 400% | [121] |
Spiral | CNTs fibers | Maintain 94% capacitance after 300 stretching cycles | 300% | [122] |
Wave | CNTs/MnO2/PPy | Maintain 96% capacitance after 500 stretching cycles | 100% | [123] |
Wave | Nickel foam/Polyaniline/Graphene | Maintain 95% capacitance after 100 tensile cycles at 30% strain | 30% | [124] |
Fabric | Ag/PPy/MnO2 | Maintain 86.2% capacitance at 40% strain | 40% | [125] |
Fabric | CNTs/PPy/MnO2 | Maintain 98.5% capacitance at 21% strain | 21% | [126] |
Fabric | SWNTs | Capacitance remains unchanged after stretching | 120% | [127] |
Serpentine | SWNTs | Maintain capacitance after 10 tensile cycles at 30% strain | 30% | [128] |
Reticular | SWNTs film | Maintain capacitance at 150% strain | 150% | [129] |
Reticular | PPy/BP/CNTs | Maintain 95% capacitance after 10,000 tensile cycles at 2000% strain | 2000% | [130] |
Reticular | PPy/CNTs | 101% dynamic capacitance after 5000 tensile cycles at 5% strain | 10% | [131] |
5. Preparation Process
5.1. Phase Inversion Methods
5.2. Chemical Oxidation Polymerization Method
5.3. Electrochemical Deposition
5.4. Chemical/Physical Vapor Deposition
5.5. Electrospinning Technology
5.6. Coating, Printing, and Spraying
5.7. 3D Printing
5.8. Vacuum Suction
6. Summary and Future Prospect
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, C.; Xia, K.; Wang, H.; Liang, X.; Yin, Z.; Zhang, Y. Advanced carbon for flexible and wearable electronics. Adv. Mater. 2019, 31, e1801072. [Google Scholar] [CrossRef] [PubMed]
- Shi, W.; Guo, Y.L.; Liu, Y.Q. When flexible organic field-effect transistors meet biomimetics: A prospective view of the internet of things. Adv. Mater. 2020, 32, 1901493. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.; Liu, S.; Zhang, L.; Yang, B.; Shu, L.; Yang, Y.; Ren, M.; Wang, Y.; Chen, J.; Chen, W.; et al. Smart textile-integrated microelectronic systems for wearable applications. Adv. Mater. 2020, 32, e1901958. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Zhang, Y.; Cai, S.; Han, Z.; Liu, X.; Wang, F.; Cao, Y.; Wang, Z.; Li, H.; Chen, Y.; et al. Flexible hybrid electronics for digital healthcare. Adv. Mater. 2020, 32, e1902062. [Google Scholar] [CrossRef]
- Li, P.; Zhang, Y.; Zheng, Z. Polymer-assisted metal deposition (PAMD) for flexible and wearable electronics: Principle, materials, printing, and devices. Adv. Mater. 2019, 31, e1902987. [Google Scholar] [CrossRef]
- Haziri, V.; Phal, S.; Boily, J.-F.; Berisha, A.; Tesfalidet, S. Oxygen interactions with covalently grafted 2D nanometric carboxyphenyl thin films—An experimental and DFT study. Coatings 2022, 12, 49. [Google Scholar] [CrossRef]
- Root, S.E.; Savagatrup, S.; Printz, A.; Rodriquez, D.; Lipomi, D.J. Mechanical properties of organic semiconductors for stretchable, highly flexible, and mechanically robust electronics. Chem. Rev. 2017, 117, 6467–6499. [Google Scholar] [CrossRef]
- Kant, T.; Shrivas, K.; Ganesan, V.; Mahipal, Y.K.; Devi, R.; Deb, M.K.; Shankar, R. Flexible printed paper electrode with silver nano-ink for electrochemical applications. Microchem. J. 2020, 155, 104687. [Google Scholar] [CrossRef]
- Liu, K.; Yao, Y.; Lv, T.; Li, H.; Li, N.; Chen, Z.; Qian, G.; Chen, T. Textile-like electrodes of seamless graphene/nanotubes for wearable and stretchable supercapacitors. J. Power Sources 2020, 446, 227355. [Google Scholar] [CrossRef]
- Hu, R.; Wang, Y.; Zhao, J.; Jiang, R.; Zheng, J. Fabrication of stretchable multi-element composite for flexible solid-state electrochemical capacitor application. Chem. Eng. J. 2019, 361, 109–116. [Google Scholar] [CrossRef]
- Tian, B.; Zheng, J.; Zhao, C.; Liu, C.; Su, C.; Tang, W.; Li, X.; Ning, G.-H. Correction: Carbonyl-based polyimide and polyquinoneimide for potassium-ion batteries. J. Mater. Chem. A 2019, 7, 12900. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Jiao, Y.; Liao, M.; Wang, B.; Peng, H. Carbon nanomaterials for flexible lithium ion batteries. Carbon 2017, 124, 79–88. [Google Scholar] [CrossRef]
- Li, D.; Lai, W.-Y.; Zhang, Y.; Huang, W. Printable transparent conductive films for flexible electronics. Adv. Mater. 2018, 30, 1704738. [Google Scholar] [CrossRef] [PubMed]
- Patel, M.; Seo, J.H.; Nguyen, T.T.; Kim, J. Active energy-controlling windows incorporating transparent photovoltaics and an integrated transparent heater. Cell Rep. Phys. Sci. 2021, 2, 100591. [Google Scholar] [CrossRef]
- Bhatnagar, P.; Hong, J.; Patel, M.; Kim, J. Transparent photovoltaic skin for artificial thermoreceptor and nociceptor memory. Nano Energy 2021, 91, 106676. [Google Scholar] [CrossRef]
- Wong, W.S.; Alberto, S. Flexible Electronics: Materials and Applications; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Lipomi, D.J.; Vosgueritchian, M.; Tee, B.C.K.; Hellstrom, S.L.; Lee, J.A.; Fox, C.H.; Bao, Z. Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes. Nat. Nanotechnol. 2011, 6, 788–792. [Google Scholar] [CrossRef]
- Kang, S.-K.; Koo, J.; Lee, Y.K.; Rogers, J.A. Advanced materials and devices for bioresorbable electronics. Accounts Chem. Res. 2018, 51, 988–998. [Google Scholar] [CrossRef]
- Chu, B.; Burnett, W.; Chung, J.W.; Bao, Z. Bring on the bodyNET. Nature 2017, 549, 328–330. [Google Scholar] [CrossRef]
- Gao, W.; Emaminejad, S.; Nyein, H.Y.Y.; Challa, S.; Chen, K.; Peck, A.; Fahad, H.M.; Ota, H.; Shiraki, H.; Kiriya, D.; et al. Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature 2016, 529, 509–514. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.; Ha, G.; Wright, D.E.; Ma, Y.; Sen-Gupta, E.; Haubrich, N.R.; Branche, P.C.; Li, W.; Huppert, G.L.; Johnson, M.; et al. Highly flexible, wearable, and disposable cardiac biosensors for remote and ambulatory monitoring. NPJ Digit. Med. 2018, 1, 2. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Norton, J.J.S.; Qazi, R.; Zou, Z.; Ammann, K.R.; Liu, H.; Yan, L.; Tran, P.L.; Jang, K.-I.; Lee, J.W.; et al. Epidermal mechano-acoustic sensing electronics for cardiovascular diagnostics and human-machine interfaces. Sci. Adv. 2016, 2, e1601185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, B.; Akhtar, A.; Liu, Y.; Chen, H.; Yeo, W.-H.; Park, S.I.; Boyce, B.; Kim, H.; Yu, J.; Lai, H.-Y.; et al. An epidermal stimulation and sensing platform for sensorimotor prosthetic control, management of lower back exertion, and electrical muscle activation. Adv. Mater. 2016, 28, 4462–4471. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.-H.; Lu, N.; Ma, R.; Kim, Y.-S.; Kim, R.-H.; Wang, S.; Wu, J.; Won, S.M.; Tao, H.; Islam, A.; et al. Epidermal electronics. Science 2011, 333, 838–843. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, H.; Xu, Y.; Li, X.; Chen, Y.; Jiang, Y.; Zhang, C.; Lu, B.; Wang, J.; Ma, Y.; Chen, Y.; et al. Epidermal inorganic optoelectronics for blood oxygen measurement. Adv. Healthc. Mater. 2017, 6, 1601013. [Google Scholar] [CrossRef]
- Park, S.I.; Brenner, D.S.; Shin, G.; Morgan, C.D.; Copits, B.A.; Chung, H.U.; Pullen, M.Y.; Noh, K.N.; Davidson, S.; Oh, S.J.; et al. Soft, stretchable, fully implantable miniaturized optoelectronic systems for wireless optogenetics. Nat. Biotechnol. 2015, 33, 1280–1286. [Google Scholar] [CrossRef] [Green Version]
- Feiner, R.; Dvir, T. Tissue–electronics interfaces: From implantable devices to engineered tissues. Nat. Rev. Mater. 2018, 3, 17076. [Google Scholar] [CrossRef]
- Minev, I.R.; Musienko, P.; Hirsch, A.; Barraud, Q.; Wenger, N.; Moraud, E.M.; Gandar, J.; Capogrosso, M.; Milekovic, T.; Asboth, L.; et al. Electronic dura mater for long-term multimodal neural interfaces. Science 2015, 347, 159–163. [Google Scholar] [CrossRef] [Green Version]
- “Electronic Plaster” Came Out? It Can Monitor Various Health Data of Human Body. Available online: https://zhuanlan.zhihu.com/p/351604777 (accessed on 2 April 2022).
- The New App Only Needs to Take Photos of the Nail Bed to Accurately Judge the Symptoms of Anemia. Available online: https://www.sohu.com/a/279876829_100005926 (accessed on 2 April 2022).
- Apple Watch Sales Exceeded 100 Million and Is Expected to Surpass MAC Computers. Available online: https://www.sohu.com/a/450746414_114822 (accessed on 2 April 2022).
- From Trillion Market to One Bubble, Four Years History of Consumer Robots. Available online: https://www.sohu.com/a/226167819_460436 (accessed on 2 April 2022).
- Liu, X. “Octopus Robot”: Opening a New Era of Software Robot. Available online: http://www.chinainc.org.cn/show-14-104546-1.html (accessed on 2 April 2022).
- Artificial Intelligence Is Expected to Be Used to Predict Tumor Lesions. Available online: https://www.sohu.com/a/253004726_100101359 (accessed on 2 April 2022).
- Rubber Semiconductor: Bring Stretchable Electronic Devices Closer to Commercialization. Available online: https://m.sohu.com/a/293201739_427506 (accessed on 2 April 2022).
- Wang, Y. An Exclusive Interview with Feng Guanping, Chairman of Shenwang New Material Technology Co., Ltd. Available online: https://www.cechoice.com/article/34160_3.html (accessed on 2 April 2022).
- Chinese Academy of Sciences Has Developed a Large Area Full Fabric Pressure Sensor Array. Available online: https://www.ctn1986.com/index.php?c=content&a=show&id=75006 (accessed on 2 April 2022).
- Interview with Cheng Huanyu, the First Person in Xianyang on the Forbes List. Available online: https://www.sohu.com/a/124592411_119659 (accessed on 2 April 2022).
- Kim, D.-H.; Cha, G.D. Deformable inorganic semiconductor. Nat. Mater. 2018, 17, 388–389. [Google Scholar] [CrossRef]
- Vaseem, M.; Mckerricher, G.; Shamim, A. robust design of a particle-free silver-organo-complex ink with high conductivity and inkjet stability for flexible electronics. ACS Appl. Mater. Interfaces 2015, 8, 177–186. [Google Scholar] [CrossRef]
- Kou, P.; Yang, L.; Chang, C.; He, S. Improved flexible transparent conductive electrodes based on silver nanowire networks by a simple sunlight illumination approach. Sci. Rep. 2017, 7, 42052. [Google Scholar] [CrossRef]
- Kumar, A.; Karadan, P.; Barshilia, H.C. Synthesis of silver nanowires towards the development of the ultrasensitive AgNWs/Si NPLs hybrid photodetector and flexible transparent conductor. Mater. Sci. Semicond. Process. 2018, 75, 239–246. [Google Scholar] [CrossRef]
- Li, J.; Tao, Y.; Chen, S.; Li, H.; Chen, P.; Wei, M.-Z.; Wang, H.; Li, K.; Mazzeo, M.; Duan, Y. A flexible plasma-treated silver-nanowire electrode for organic light-emitting devices. Sci. Rep. 2017, 7, 16468. [Google Scholar] [CrossRef] [Green Version]
- Magdassi, S.; Grouchko, M.; Berezin, O.; Kamyshny, A. Triggering the sintering of silver nanoparticles at room temperature. ACS Nano 2010, 4, 1943–1948. [Google Scholar] [CrossRef] [PubMed]
- Nyholm, L.; Nyström, G.; Mihranyan, A.; Strømme, M. Toward flexible polymer and paper-based energy storage devices. Adv. Mater. 2011, 23, 3751–3769. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Yang, M.; Huang, Q.; Wang, D.; Yu, R.; Wang, J.; Zheng, Z.; Wang, D. V2O5 textile cathodes with high capacity and stability for flexible lithium-ion batteries. Adv. Mater. 2020, 32, 1906205. [Google Scholar] [CrossRef] [PubMed]
- Trung, T.Q.; Lee, N.-E. Recent progress on stretchable electronic devices with intrinsically stretchable components. Adv. Mater. 2016, 29, 1603167. [Google Scholar] [CrossRef] [PubMed]
- Rogers, J.A.; Someya, T.; Huang, Y. Materials and mechanics for stretchable electronics. Science 2010, 327, 1603–1607. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, L.; Hu, Y.; Gao, H.; Gao, Y.; Zhu, W.; Zhan, L.; Liu, H.; Chen, Y.; Hu, K.; Wang, P.; et al. Moisture-assisted formation of high-quality silver nanowire transparent conductive films with low junction resistance. Coatings 2021, 11, 671. [Google Scholar] [CrossRef]
- Hammock, M.L.; Chortos, A.; Tee, B.C.-K.; Tok, J.B.-H.; Bao, Z. 25th anniversary article: The evolution of electronic skin (E-skin): A brief history, design considerations, and recent progress. Adv. Mater. 2013, 25, 5997–6038. [Google Scholar] [CrossRef]
- Magalhaes, B.; Engelhardt, S.; Molin, C.; Gebhardt, S.E.; Nielsch, K.; Hühne, R. Structural and electric properties of epitaxial Na0.5Bi0.5TiO3-based thin films. Coatings 2021, 11, 651. [Google Scholar] [CrossRef]
- Liu, Z.; Qian, Z.; Song, J.; Zhang, Y. Conducting and stretchable composites using sandwiched graphene-carbon nanotube hybrids and styrene-butadiene rubber. Carbon 2019, 149, 181–189. [Google Scholar] [CrossRef]
- Sotelo, J.; Bonilla-Ríos, J.; García-Escobar, F.; Gordillo, J. Film growth of tetragonal SnO2 on glass substrate by dip-coating technique for ethanol sensing applications. Coatings 2021, 11, 303. [Google Scholar] [CrossRef]
- Zhu, C.; Liu, T.; Qian, F.; Han, T.Y.-J.; Duoss, E.B.; Kuntz, J.; Spadaccini, C.M.; Worsley, M.A.; Li, Y. Supercapacitors based on three-dimensional hierarchical graphene aerogels with periodic macropores. Nano Lett. 2016, 16, 3448–3456. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, X.; Shen, X.; Han, N.M.; Wu, Y.; Zheng, Q.; Jia, J.; Wang, N.; Kim, J. An ultralight graphene honeycomb sandwich for stretchable light-emitting displays. Adv. Funct. Mater. 2018, 28, 1707043. [Google Scholar] [CrossRef]
- Sekitani, T.; Nakajima, H.; Maeda, H.; Fukushima, T.; Aida, T.; Hata, K.; Someya, T. Stretchable active-matrix organic light-emitting diode display using printable elastic conductors. Nat. Mater. 2009, 8, 494–499. [Google Scholar] [CrossRef] [PubMed]
- Yu, K.J.; Kuzum, D.; Hwang, S.-W.; Kim, B.H.; Juul, H.; Kim, N.H.; Won, S.M.; Chiang, K.; Trumpis, M.; Richardson, A.G. Bioresorbable silicon electronics for transient spatiotemporal mapping of electrical activity from the cerebral cortex. Nat. Mater. 2016, 15, 782–791. [Google Scholar] [CrossRef]
- Chen, T.; Peng, H.; Durstock, M.F.; Dai, L. High-performance transparent and stretchable all-solid supercapacitors based on highly aligned carbon nanotube sheets. Sci. Rep. 2015, 4, 3612. [Google Scholar] [CrossRef] [Green Version]
- Xu, P.; Gu, T.; Cao, Z.; Wei, B.; Yu, J.; Li, F.; Byun, J.-H.; Lu, W.; Li, Q.; Chou, T.-W. Carbon nanotube fiber based stretchable wire-shaped supercapacitors. Adv. Energy Mater. 2013, 4, 1300759. [Google Scholar] [CrossRef]
- Ren, J.; Zhang, Y.; Bai, W.; Chen, X.; Zhang, Z.; Fang, X.; Weng, W.; Wang, Y.; Peng, H. Elastic and wearable wire-shaped lithium-ion battery with high electrochemical performance. Angew. Chem. 2014, 126, 7998–8003. [Google Scholar] [CrossRef]
- Zang, J.; Cao, C.; Feng, Y.; Liu, J.; Zhao, X. Stretchable and high-performance supercapacitors with crumpled graphene papers. Sci. Rep. 2015, 4, 6492. [Google Scholar] [CrossRef] [Green Version]
- Lu, Z.; Foroughi, J.; Wang, C.; Long, H.; Wallace, G.G. Superelastic hybrid CNT/graphene fibers for wearable energy storage. Adv. Energy Mater. 2018, 8, 1702047. [Google Scholar] [CrossRef]
- Lv, Z.; Luo, Y.; Tang, Y.; Wei, J.; Zhu, Z.; Zhou, X.; Li, W.; Zeng, Y.; Zhang, W.; Zhang, Y.; et al. Editable supercapacitors with customizable stretchability based on mechanically strengthened ultralong MnO2 nanowire composite. Adv. Mater. 2018, 30, 1704531. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Liu, Y.; Hu, M.; Wei, H.; Gao, Y. Spiral wire-type stretchable all-solid-state supercapacitors based on MnO2/graphene/Ni wires. Electrochim. Acta 2017, 256, 44–51. [Google Scholar] [CrossRef]
- Lv, T.; Yao, Y.; Li, N.; Chen, T. Highly stretchable supercapacitors based on aligned carbon nanotube/molybdenum disulfide composites. Angew. Chem. Int. Ed. 2016, 55, 9191–9195. [Google Scholar] [CrossRef]
- Huang, J.; Li, D.; Zhao, M.; Mensah, A.; Lv, P.; Tian, X.; Huang, F.; Ke, H.; Wei, Q. Highly sensitive and stretchable CNT-bridged AgNP strain sensor based on TPU electrospun membrane for human motion detection. Adv. Electron. Mater. 2019, 5, 1900241. [Google Scholar] [CrossRef]
- Li, Z.; Huang, T.; Gao, W.; Xu, Z.; Chang, D.; Zhang, C.; Gao, C. Hydrothermally activated graphene fiber fabrics for textile electrodes of supercapacitors. ACS Nano 2017, 11, 11056–11065. [Google Scholar] [CrossRef]
- Xiong, Z.C.; Liao, W.H. Mechanically tough large-area hierarchical porous graphene films for high-performance flexible supercapacitor applications. Adv. Mater. 2015, 27, 4469–4475. [Google Scholar] [CrossRef]
- Zhang, D.; Miao, M.; Niu, H.; Wei, Z. Core-spun carbon nanotube yarn supercapacitors for wearable electronic textiles. ACS Nano 2014, 8, 4571–4579. [Google Scholar] [CrossRef]
- Souri, H.; Bhattacharyya, D. Highly Stretchable multifunctional wearable devices based on conductive cotton and wool fabrics. ACS Appl. Mater. Interfaces 2018, 10, 20845–20853. [Google Scholar] [CrossRef]
- Wen, L.; Li, F.; Cheng, H.-M. Carbon nanotubes and graphene for flexible electrochemical energy storage: From materials to devices. Adv. Mater. 2016, 28, 4306–4337. [Google Scholar] [CrossRef]
- Boutry, C.M.; Negre, M.; Jorda, M.; Vardoulis, O.; Chortos, A.; Khatib, O.; Bao, Z. A hierarchically patterned, bioinspired e-skin able to detect the direction of applied pressure for robotics. Sci. Robot. 2018, 3, eaau6914. [Google Scholar] [CrossRef] [PubMed]
- Xiao, X.; Peng, X.; Jin, H.; Li, T.; Zhang, C.; Gao, B.; Hu, B.; Huo, K.; Zhou, J. Freestanding mesoporous VN/CNT hybrid electrodes for flexible all-solid-state supercapacitors. Adv. Mater. 2013, 25, 5091–5097. [Google Scholar] [CrossRef] [PubMed]
- Niu, Z.; Luan, P.; Shao, Q.; Dong, H.; Li, J.; Chen, J.; Zhao, D.; Cai, L.; Zhou, W.; Chen, X.; et al. A “skeleton/skin” strategy for preparing ultrathin free-standing single-walled carbon nanotube/polyaniline films for high performance supercapacitor electrodes. Energy Environ. Sci. 2012, 5, 8726–8733. [Google Scholar] [CrossRef] [Green Version]
- Xu, Z.; Liu, Z.; Sun, H.; Gao, C. Highly electrically conductive Ag-doped graphene fibers as stretchable conductors. Adv. Mater. 2013, 25, 3249–3253. [Google Scholar] [CrossRef]
- Zhou, K.; Zhao, Y.; Sun, X.; Yuan, Z.; Zheng, G.; Dai, K.; Mi, L.; Pan, C.; Liu, C.; Shen, C. Ultra-stretchable triboelectric nanogenerator as high-sensitive and self-powered electronic skins for energy harvesting and tactile sensing. Nano Energy 2020, 70, 104546. [Google Scholar] [CrossRef]
- Zhang, F.; Wu, S.; Peng, S.; Sha, Z.; Wang, C.H. Synergism of binary carbon nanofibres and graphene nanoplates in improving sensitivity and stability of stretchable strain sensors. Compos. Sci. Technol. 2019, 172, 7–16. [Google Scholar] [CrossRef]
- Guo, K.; Wang, X.; Hu, L.; Zhai, T.; Li, H.; Yu, N. Highly Stretchable Waterproof Fiber Asymmetric Supercapacitors in an Integrated Structure. ACS Appl. Mater. Interfaces 2018, 10, 19820–19827. [Google Scholar] [CrossRef]
- Zhang, Y.; Bai, W.; Cheng, X.; Ren, J.; Weng, W.; Chen, P.; Fang, X.; Zhang, Z.; Peng, H. Flexible and stretchable lithium-ion batteries and supercapacitors based on electrically conducting carbon nanotube fiber springs. Angew. Chem. Int. Ed. 2014, 53, 14564–14568. [Google Scholar] [CrossRef]
- Tang, Q.; Chen, M.; Yang, C.; Wang, W.; Bao, H.; Wang, G. Enhancing the energy density of asymmetric stretchable supercapacitor based on wrinkled CNT@MnO2 cathode and CNT@polypyrrole anode. ACS Appl. Mater. Interfaces 2015, 7, 15303–15313. [Google Scholar] [CrossRef]
- Yun, T.G.; Hwang, B.I.; Kim, D.; Hyun, S.; Han, S.M. Polypyrrole–MnO2-coated textile-based flexible-stretchable supercapacitor with high electrochemical and mechanical reliability. ACS Appl. Mater. Interfaces 2015, 7, 9228–9234. [Google Scholar] [CrossRef]
- Hu, L.; Pasta, M.; La Mantia, F.; Cui, L.; Jeong, S.; Deshazer, H.D.; Choi, J.W.; Han, S.M.; Cui, Y. Stretchable, porous, and conductive energy textiles. Nano Lett. 2010, 10, 708–714. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, D.; Shin, G.; Kang, Y.J.; Kim, W.; Ha, J.S. Fabrication of a stretchable solid-state micro-supercapacitor array. ACS Nano 2013, 7, 7975–7982. [Google Scholar] [CrossRef] [PubMed]
- Guo, F.M.; Xu, R.Q.; Cui, X.; Zhang, L.; Wang, K.L.; Yao, Y.W.; Wei, J.Q. High performance of stretchable carbon nanotube–polypyrrole fiber supercapacitors under dynamic deformation and temperature variation. J. Mater. Chem. A 2016, 4, 9311–9318. [Google Scholar] [CrossRef]
- Yang, Y.; Sun, N.; Wen, Z.; Cheng, P.; Zheng, H.; Shao, H.; Xia, Y.; Chen, C.; Lan, H.; Xie, X.; et al. Liquid-metal-based super-stretchable and structure-designable triboelectric nanogenerator for wearable electronics. ACS Nano 2018, 12, 2027–2034. [Google Scholar] [CrossRef] [PubMed]
- So, J.-H.; Koo, H.-J.; Dickey, M.D.; Velev, O.D. Ionic current rectification in soft-matter diodes with liquid-metal electrodes. Adv. Funct. Mater. 2012, 22, 625–631. [Google Scholar] [CrossRef]
- Liu, Y.; Gao, M.; Mei, S.; Han, Y.; Liu, J. Ultra-compliant liquid metal electrodes with in-plane self-healing capability for dielectric elastomer actuators. Appl. Phys. Lett. 2013, 103, 064101. [Google Scholar] [CrossRef]
- Gilshteyn, E.P.; Amanbayev, D.; Anisimov, A.S.; Kallio, T.; Nasibulin, A.G. All-nanotube stretchable supercapacitor with low equivalent series resistance. Sci. Rep. 2017, 7, 17449. [Google Scholar] [CrossRef] [Green Version]
- Shi, J.; Wang, L.; Dai, Z.; Zhao, L.; Du, M.; Li, H.; Fang, Y. Multiscale hierarchical design of a flexible piezoresistive pressure sensor with high sensitivity and wide linearity range. Small 2018, 14, e1800819. [Google Scholar] [CrossRef]
- Zhang, Y.; Sheehan, C.J.; Zhai, J.; Zou, G.; Luo, H.; Xiong, J.; Zhu, Y.; Jia, Q.X. Polymer-embedded carbon nanotube ribbons for stretchable conductors. Adv. Mater. 2010, 22, 3027–3031. [Google Scholar] [CrossRef]
- Lin, J.; Peng, Z.; Liu, Y.; Ruiz-Zepeda, F.; Ye, R.; Samuel, E.L.G.; Yacaman, M.J.; Yakobson, B.I.; Tour, J.M. Laser-induced porous graphene films from commercial polymers. Nat. Commun. 2014, 5, 5714. [Google Scholar] [CrossRef]
- Lamberti, A.; Clerici, F.; Fontana, M.; Scaltrito, L.A. Highly stretchable supercapacitor using laser-induced graphene electrodes onto elastomeric substrate. Adv. Energy Mater. 2016, 6, 1600050. [Google Scholar] [CrossRef]
- Choi, T.Y.; Hwang, B.-U.; Kim, B.-Y.; Trung, T.Q.; Nam, Y.H.; Kim, D.-N.; Eom, K.; Lee, N.-E. Stretchable, transparent, and stretch-unresponsive capacitive touch sensor array with selectively patterned silver nanowires/reduced graphene oxide electrodes. ACS Appl. Mater. Interfaces 2017, 9, 18022–18030. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Wang, L.; Li, Y.; Wang, Y.; Zhang, J.; Guan, G.; Pan, Z.; Zheng, G.; Peng, H. Nitrogen-doped core-sheath carbon nanotube array for highly stretchable supercapacitor. Adv. Energy Mater. 2017, 7, 1601814. [Google Scholar] [CrossRef]
- Li, M.; Chen, Q.; Zhan, H. Ultrathin manganese dioxide nanosheets grown on partially unzipped nitrogen-doped carbon nanotubes for high-performance asymmetric supercapacitors. J. Alloy. Compd. 2017, 702, 236–243. [Google Scholar] [CrossRef]
- Wang, J.; Jiu, J.; Nogi, M.; Sugahara, T.; Nagao, S.; Koga, H.; He, P.; Suganuma, K. A highly sensitive and flexible pressure sensor with electrodes and elastomeric interlayer containing silver nanowires. Nanoscale 2015, 7, 2926–2932. [Google Scholar] [CrossRef]
- Maeda, R.; Shinohara, Y.; Kawakami, H.; Isoda, Y.; Kanazawa, I.; Mitsuishi, M. The conducting fibrillar networks of a PEDOT:PSS hydrogel and an organogel prepared by the gel-film formation process. Nanotechnol. 2020, 32, 135403. [Google Scholar] [CrossRef] [PubMed]
- Choong, C.-L.; Shim, M.-B.; Lee, B.-S.; Jeon, S.; Ko, D.-S.; Kang, T.-H.; Bae, J.; Lee, S.H.; Byun, K.-E.; Im, J.; et al. Highly stretchable resistive pressure sensors using a conductive elastomeric composite on a micropyramid array. Adv. Mater. 2014, 26, 3451–3458. [Google Scholar] [CrossRef]
- Zhu, Y.; Li, N.; Lv, T.; Yao, Y.; Peng, H.; Shi, J.; Cao, S.; Chen, T. Ag-Doped PEDOT:PSS/CNT composites for thin-film all-solid-state supercapacitors with a stretchability of 480%. J. Mater. Chem. A 2018, 6, 941–947. [Google Scholar] [CrossRef]
- Zhao, P.; Zhang, R.; Tong, Y.; Zhao, X.; Zhang, T.; Tang, Q.; Liu, Y. Strain-discriminable pressure/proximity sensing of transparent stretchable electronic skin based on PEDOT:PSS/SWCNT electrodes. ACS Appl. Mater. Interfaces 2020, 12, 55083–55093. [Google Scholar] [CrossRef]
- Lee, J.H.; Jeong, Y.R.; Lee, G.; Jin, S.W.; Lee, Y.H.; Hong, S.Y.; Park, H.; Kim, J.W.; Lee, S.-S.; Ha, J.S. Highly conductive, stretchable, and transparent PEDOT:PSS electrodes fabricated with triblock copolymer additives and acid treatment. ACS Appl. Mater. Interfaces 2018, 10, 28027–28035. [Google Scholar] [CrossRef]
- Ryu, S.; Lee, P.; Chou, J.B.; Xu, R.; Zhao, R.; Hart, A.J.; Kim, S.G. Fabrication of extremely elastic wearable strain sensor using aligned carbon nanotube fibers for monitoring human motion. ACS Nano 2015, 9, 5929–5936. [Google Scholar] [CrossRef] [PubMed]
- Mai, H.; Mutlu, R.; Tawk, C.; Alici, G.; Sencadas, V. Ultra-stretchable MWCNT–Ecoflex piezoresistive sensors for human motion detection applications. Compos. Sci. Technol. 2019, 173, 118–124. [Google Scholar] [CrossRef]
- Juyeon, Y.; Joonhyung, L.; Jaehyun, H. Stretchable supercapacitors based on carbon nanotubes-deposited rubber polymer nanofibers electrodes with high tolerance against strain. Nanomaterials 2018, 8, 541. [Google Scholar]
- You, I.; Kim, B.; Park, J.; Koh, K.; Shin, S.; Jung, S.; Jeong, U. Stretchable E-skin apexcardiogram sensor. Adv. Mater. 2016, 28, 6359–6364. [Google Scholar] [CrossRef]
- Gong, S.; Lai, D.T.; Wang, Y.; Yap, L.W.; Si, K.J.; Shi, Q.; Jason, N.N.; Sridhar, T.; Uddin, H.; Cheng, W. Tattoolike Polyaniline microparticle-doped gold nanowire patches as highly durable wearable sensors. ACS Appl. Mater. Interfaces 2015, 7, 19700–19708. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Zhao, C.; Zhang, W.; Zhang, B.; Sun, M.; Chen, X.; Song, Y. Structural color control of CoFeB-coated nanoporous thin films. Coatings 2021, 11, 1123. [Google Scholar] [CrossRef]
- Chen, Y.; Cai, K.; Liu, C.; Song, H.; Yang, X. High-performance and breathable polypyrrole coated air-laid paper for flexible all-solid-state supercapacitors. Adv. Energy Mater. 2017, 7, 1701247. [Google Scholar] [CrossRef]
- Dong, L.; Xu, C.; Li, Y.; Pan, Z.; Liang, G.; Zhou, E.; Kang, F.; Yang, Q.-H. Breathable and wearable energy storage based on highly flexible paper electrodes. Adv. Mater. 2016, 28, 9313–9319. [Google Scholar] [CrossRef]
- Xia, X.H.; Tu, J.P.; Zhang, Y.Q.; Mai, Y.J.; Wang, X.L.; Gu, C.D.; Zhao, X.B. Three-dimentional porous nano-Ni/Co(OH)2 nanoflake composite film: A pseudocapacitive material with superior performance. J. Phys. Chem. C 2011, 115, 22662–22668. [Google Scholar] [CrossRef]
- Li, Y.; Sheng, K.; Yuan, W.; Shi, G. A high-performance flexible fiber-shaped electrochemical capacitor based on electrochemically reduced graphene oxide. Chem. Commun. 2013, 49, 291–293. [Google Scholar] [CrossRef]
- Yue, B.; Wang, C.; Ding, X.; Wallace, G. Polypyrrole coated nylon lycra fabric as stretchable electrode for supercapacitor applications. Electrochim. Acta 2012, 68, 18–24. [Google Scholar] [CrossRef] [Green Version]
- Roh, E.; Hwang, B.-U.; Kim, D.; Kim, B.-Y.; Lee, N.-E. Stretchable, transparent, ultrasensitive, and patchable strain sensor for human-machine interfaces comprising a nanohybrid of carbon nanotubes and conductive elastomers. ACS Nano 2015, 9, 6252–6261. [Google Scholar] [CrossRef] [PubMed]
- Qian, X.; Cai, Z.; Su, M.; Li, F.; Fang, W.; Li, Y.; Zhou, X.; Li, Q.; Feng, X.; Li, W.; et al. Printable skin-driven mechanoluminescence devices via nanodoped matrix modification. Adv. Mater. 2018, 30, e1800291. [Google Scholar] [CrossRef] [PubMed]
- Ma, Z.; Huang, Q.; Xu, Q.; Zhuang, Q.; Zhao, X.; Yang, Y.; Qiu, H.; Yang, Z.; Wang, C.; Chai, Y.; et al. Permeable superelastic liquid-metal fibre mat enables biocompatible and monolithic stretchable electronics. Nat. Mater. 2021, 20, 859–868. [Google Scholar] [CrossRef]
- Dong, R.; Wang, L.; Hang, C.; Chen, Z.; Liu, X.; Zhong, L.; Qi, J.; Huang, Y.; Liu, S.; Wang, L.; et al. Printed stretchable liquid metal electrode arrays for in vivo neural recording. Small 2021, 17, 2006612. [Google Scholar] [CrossRef] [PubMed]
- He, W.; Wang, C.; Wang, H.; Jian, M.; Lu, W.; Liang, X.; Zhang, X.; Yang, F.; Zhang, Y. Integrated textile sensor patch for real-time and multiplex sweat analysis. Sci. Adv. 2019, 5, eaax0649. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, J.L.; Lu, W.B.; Smith, J.P.; Booksh, K.S.; Meng, L.H.; Huang, Y.D.; Li, Q.W.; Byun, J.H.; Oh, Y.; Yan, Y.S.; et al. A high performance stretchable asymmetric fiber-shaped supercapacitor with a core-sheath helical structure. Adv. Energy Mater. 2017, 7, 1600976. [Google Scholar] [CrossRef]
- Chu, X.; Zhang, H.; Su, H.; Liu, F.; Gu, B.; Huang, H.; Zhang, H.; Deng, W.; Zheng, X.; Yang, W. A novel stretchable supercapacitor electrode with high linear capacitance. Chem. Eng. J. 2018, 349, 168–175. [Google Scholar] [CrossRef]
- Lv, J.; Jeerapan, I.; Tehrani, F.; Yin, L.; Silva-Lopez, C.A.; Jang, J.-H.; Joshuia, D.; Shah, R.; Liang, Y.; Xie, L.; et al. Sweat-based wearable energy harvesting-storage hybrid textile devices. Energy Environ. Sci. 2018, 11, 3431–3442. [Google Scholar] [CrossRef]
- Yang, Y.; Huang, Q.Y.; Niu, L.Y.; Wang, D.R.; Yan, C.; She, Y.Y.; Zheng, Z.J. Waterproof, Ultrahigh areal-capacitance, wearable supercapacitor fabrics. Adv. Mater. 2017, 29, 1606679. [Google Scholar] [CrossRef]
- Bhagavatheswaran, E.S.; Parsekar, M.; Das, A.; Le, H.H.; Wiessner, S.; Stöckelhuber, K.W.; Schmaucks, G.; Heinrich, G. Construction of an interconnected nanostructured carbon black network: Development of highly stretchable and robust elastomeric conductors. J. Phys. Chem. C 2015, 119, 21723–21731. [Google Scholar] [CrossRef]
- Ge, J.; Yao, H.-B.; Wang, X.; Ye, Y.-D.; Wang, J.-L.; Wu, Z.-Y.; Liu, J.-W.; Fan, F.-J.; Gao, H.-L.; Zhang, C.-L.; et al. Stretchable conductors based on silver nanowires: Improved performance through a binary network design. Angew. Chem. Int. Ed. 2013, 52, 1654–1659. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Wang, R.; Zhai, H.; Sun, J. Stretchable electronic skin based on silver nanowire composite fiber electrodes for sensing pressure, proximity, and multidirectional strain. Nanoscale 2017, 9, 3834–3842. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Cao, P.; Tan, Y.; Zhang, L. Effect of the addition of TEOS on the SiC fibers fabricated by electrospinning. J. Adv. Ceram. 2013, 2, 242–245. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Sun, X.; Shang, Y.; Xiong, K.; Xu, Z.; Guo, R.; Cai, S.; Zheng, C. Dense ceramics with complex shape fabricated by 3D printing: A review. J. Adv. Ceram. 2021, 10, 195–218. [Google Scholar] [CrossRef]
- Kim, J.S.; Lee, S.C.; Hwang, J.; Lee, E.; Cho, K.; Kim, S.J.; Kim, D.H.; Lee, W.H. Enhanced sensitivity of iontronic graphene tactile sensors facilitated by spreading of ionic liquid pinned on graphene grid. Adv. Funct. Mater. 2020, 30, 1908993. [Google Scholar] [CrossRef]
- Amjadi, M.; Pichitpajongkit, A.; Lee, S.; Ryu, S.; Park, I. Highly stretchable and sensitive strain sensor based on silver nanowire–elastomer nanocomposite. ACS Nano 2014, 8, 5154–5163. [Google Scholar] [CrossRef]
- Dong, W.; Kong, L.; Kang, L.; Ran, F. Flexibility and microminiaturization of electrode materials and devices for supercapacitor. Mater. Rep. 2018, 32, 2912–2919. [Google Scholar]
- Zhang, Q.; Zhou, K.; Lei, J.; Hu, W. Nitrogen dual-doped porous carbon fiber: A binder-free and high-performance flexible anode for lithium ion batteries. Appl. Surf. Sci. 2019, 467–468, 992–999. [Google Scholar] [CrossRef]
- Qi, R.; Nie, J.; Liu, M.; Xia, M.; Lu, X. Stretchable V2O5/PEDOT supercapacitors: A modular fabrication process and charging with triboelectric nanogenerators. Nanoscale 2018, 10, 7719–7725. [Google Scholar] [CrossRef]
- Dong, K.; Wang, Y.-C.; Deng, J.; Dai, Y.; Zhang, S.L.; Zou, H.; Gu, B.; Sun, B.; Wang, Z.L. A highly stretchable and washable all-yarn-based self-charging knitting power textile composed of fiber triboelectric nanogenerators and supercapacitors. ACS Nano 2017, 11, 9490–9499. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Ran, F.; Shen, K.; Yang, Y.; Wu, J.; Niu, X.; Kong, L.; Kang, L.; Chen, S. Facile fabrication of ultrathin hybrid membrane for highly flexible supercapacitors via in-situ phase separation of polyethersulfone. J. Power Sources 2016, 329, 104–114. [Google Scholar] [CrossRef]
- Durham, J.W.; Zhu, Y. Fabrication of functional nanowire devices on unconventional substrates using strain-release assembly. ACS Appl. Mater. Interfaces 2013, 5, 256–261. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Liu, Y.; Zhao, Y.; Tsang, Y.H.; Lau, S.P.; Huang, H.; Chai, Y. Stretchable all-solid-state supercapacitor with wavy shaped polyaniline/graphene electrode. J. Mater. Chem. A 2014, 2, 9142–9149. [Google Scholar] [CrossRef]
- Ren, D.; Dong, L.; Wang, J.; Ma, X.; Xu, C.; Kang, F. Facile Preparation of high-performance stretchable fiber-like electrodes and supercapacitors. ChemistrySelect 2018, 3, 4179–4184. [Google Scholar] [CrossRef]
- Zhang, N.; Zhou, W.; Zhang, Q.; Luan, P.; Cai, L.; Yang, F.; Zhang, X.; Fan, Q.; Zhou, W.; Xiao, Z.; et al. Biaxially stretchable supercapacitors based on the buckled hybrid fiber electrode array. Nanoscale 2015, 7, 12492–12497. [Google Scholar] [CrossRef]
- He, S.; Qiu, L.; Wang, L.; Cao, J.; Xie, S.; Gao, Q.; Zhang, Z.; Zhang, J.; Wang, B.; Peng, H. A three-dimensionally stretchable high performance supercapacitor. J. Mater. Chem. A 2016, 4, 14968–14973. [Google Scholar] [CrossRef]
- Lee, Y.; Chae, S.; Park, H.; Kim, J.; Jeong, S.H. Stretchable and transparent supercapacitors based on extremely long MnO2/Au nanofiber networks. Chem. Eng. J. 2020, 382, 122798. [Google Scholar] [CrossRef]
- Kim, A.; Won, Y.; Woo, K.; Jeong, S.; Moon, J. All-solution-processed indium-free transparent composite electrodes based on Ag nanowire and metal oxide for thin-film solar cells. Adv. Funct. Mater. 2014, 24, 2462–2471. [Google Scholar] [CrossRef]
- Yan, X.; Ma, J.; Xu, H.; Wang, C.; Liu, Y. Fabrication of silver nanowires and metal oxide composite transparent electrodes and their application in UV light-emitting diodes. J. Phys. D Appl. Phys. 2016, 49, 325103. [Google Scholar] [CrossRef]
- Pu, J.; Wang, X.; Xu, R.; Komvopoulos, K. Highly stretchable microsupercapacitor arrays with honeycomb structures for integrated wearable electronic systems. ACS Nano 2016, 10, 9306–9315. [Google Scholar] [CrossRef] [PubMed]
- Lv, Z.; Tang, Y.; Zhu, Z.; Wei, J.; Li, W.; Xia, H.; Jiang, Y.; Liu, Z.; Luo, Y.; Ge, X.; et al. Honeycomb-lantern-inspired 3D stretchable supercapacitors with enhanced specific areal capacitance. Adv. Mater. 2018, 30, e1805468. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, Y.; Zhang, X.; Huo, Z.; Li, X.; Que, M.; Peng, Z.; Wang, H.; Pan, C. A Highly stretchable transparent self-powered triboelectric tactile sensor with metallized nanofibers for wearable electronics. Adv. Mater. 2018, 30, e1706738. [Google Scholar] [CrossRef] [PubMed]
- Zhou, G.; Kim, N.-R.; Chun, S.-E.; Lee, W.; Um, M.-K.; Chou, T.-W.; Islam, M.; Byun, J.-H.; Oh, Y. Highly porous and easy shapeable poly-dopamine derived graphene-coated single walled carbon nanotube aerogels for stretchable wire-type supercapacitors. Carbon 2018, 130, 137–144. [Google Scholar] [CrossRef]
- Sachse, C.; Müller-Meskamp, L.; Bormann, L.; Kim, Y.H.; Lehnert, F.; Philipp, A.; Beyer, B.; Leo, K. Transparent, dip-coated silver nanowire electrodes for small molecule organic solar cells. Org. Electron. 2013, 14, 143–148. [Google Scholar] [CrossRef]
- Huang, Y.; Tao, J.; Meng, W.; Zhu, M.; Fu, Y.; Gao, Y.; Zhi, C. Super-high rate stretchable polypyrrole-based supercapacitors with excellent cycling stability. Nano Energy 2015, 11, 518–525. [Google Scholar] [CrossRef]
- Wang, K.; Meng, Q.; Zhang, Y.; Wei, Z.; Miao, M. High-performance two-ply yarn supercapacitors based on carbon nanotubes and polyaniline nanowire arrays. Adv. Mater. 2013, 25, 1494–1498. [Google Scholar] [CrossRef]
- Yu, H.; Ge, X.; Bulin, C.; Xing, R.; Li, R.; Xin, G.; Zhang, B. Facile fabrication and energy storage analysis of graphene/PANI paper electrodes for supercapacitor application. Electrochim. Acta 2017, 253, 239–247. [Google Scholar] [CrossRef]
- Chen, X.; Lin, H.; Deng, J.; Zhang, Y.; Sun, X.; Chen, P.; Fang, X.; Zhang, Z.; Guan, G.; Peng, H. Electrochromic fiber-shaped supercapacitors. Adv. Mater. 2014, 26, 8126–8132. [Google Scholar] [CrossRef]
- Amade, R.; Jover, E.; Caglar, B.; Mutlu, T.; Bertran, E. Optimization of MnO2/vertically aligned carbon nanotube composite for supercapacitor application. J. Power Sources 2011, 196, 5779–5783. [Google Scholar] [CrossRef]
- Chen, X.; Lin, H.; Chen, P.; Guan, G.; Deng, J.; Peng, H. Smart, stretchable supercapacitors. Adv. Mater. 2014, 26, 4444–4449. [Google Scholar] [CrossRef] [PubMed]
- Cheon, G.; Duerloo, K.-A.N.; Sendek, A.D.; Porter, C.; Chen, Y.; Reed, E.J. Data mining for new two- and one-dimensional weakly bonded solids and lattice-commensurate heterostructures. Nano Lett. 2017, 17, 1915–1923. [Google Scholar] [CrossRef] [PubMed]
- Niu, Z.; Dong, H.; Zhu, B. Highly stretchable, integrated supercapacitors based on single-walled carbon nanotube films with continuo us reticulate architecture. Adv. Mater. 2013, 25, 1058–1064. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Tang, X.; Gan, L.; Li, W.; Zhang, J.; Wang, H.; Qin, Z.; Zhou, T.; Huang, J.; Xie, C.; et al. High-adhesion stretchable electrode via cross-linking intensified electroless deposition on a biomimetic elastomeric micropore film. ACS Appl. Mater. Interfaces 2019, 11, 20535–20544. [Google Scholar] [CrossRef]
- Iqbal, N.; Wang, X.; Babar, A.A.; Yan, J.; Yu, J.; Park, S.-J.; Ding, B. Polyaniline enriched flexible carbon nanofibers with core-shell structure for high-performance wearable supercapacitors. Adv. Mater. Interfaces 2017, 4, 1700855. [Google Scholar] [CrossRef]
- Zhang, X.; Guo, W.; Gao, G.; Que, M.; Pan, C.; Wang, Z.L. CuS nano through-networks for highly stable transparent conducting electrodes. J. Phys. Chem. C 2016, 4, 4733–4739. [Google Scholar]
- Fraser, D.B.; Cook, H.D. High conductive transparent films of sputtered In2−xSnxO3−y. J. Electrochem. Soc. 1972, 119, 1368–1374. [Google Scholar] [CrossRef]
- Xu, Y.; Schwab, M.G.; Strudwick, A.J.; Hennig, I.; Feng, X.; Wu, Z.; Müllen, K. Screen-printable thin film supercapacitor device utilizing graphene/polyaniline inks. Adv. Energy Mater. 2013, 3, 1035–1040. [Google Scholar] [CrossRef]
- Li, J.; Shao, Y.; Shi, Q. Calligraphy-inspired brush written foldable supercapacitors. Nano Energy 2017, 38, 428–437. [Google Scholar] [CrossRef]
- Lim, J.-W.; Cho, D.-Y.; Kim, J.-; Na, S.-I.; Kim, H.-K. Simple brush-painting of flexible and transparent Ag nanowire network electrodes as an alternative ITO anode for cost-efficient flexible organic solar cells. Sol. Energy Mater. Sol. Cells 2012, 107, 348–354. [Google Scholar] [CrossRef]
- Sun, K.; Wei, T.-S.; Ahn, B.Y.; Seo, J.Y.; Dillon, S.J.; Lewis, J.A. 3D printing of interdigitated Li-ion microbattery architectures. Adv. Mater. 2013, 25, 4539–4543. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kang, M.-G.; Park, H.J.; Ahn, S.H.; Xu, T.; Guo, L.J. Toward low-cost, high-efficiency, and scalable organic solar cells with transparent metal electrode and improved domain morphology. IEEE J. Sel. Top. Quantum Electron. 2010, 16, 1807–1820. [Google Scholar] [CrossRef]
- Liu, L.; Tian, Q.; Yao, W.; Li, M.; Li, Y.; Wu, W. All-printed Ultra flexible and stretchable asymmetric in-plane solid-state supercapacitors (ASCs) for wearable electronics. J. Power Sources 2018, 397, 59–67. [Google Scholar] [CrossRef]
- De, S.; Higgins, T.M.; Lyons, P.E.; Doherty, E.M.; Nirmalraj, P.N.; Blau, W.; Boland, J.; Coleman, J. Silver Nanowire networks as flexible, transparent, conducting films: Extremely high DC to optical conductivity ratios. ACS Nano 2009, 3, 1767–1774. [Google Scholar] [CrossRef] [PubMed]
- Zeng, X.-Y.; Zhang, Q.-K.; Yu, R.-M.; Lu, C.-Z. A new transparent conductor: Silver nanowire film buried at the surface of a transparent polymer. Adv. Mater. 2010, 22, 4484–4488. [Google Scholar] [CrossRef] [PubMed]
- Wu, P.; Cheng, S.; Yang, L. Synthesis and characterization of self-standing and highly flexible delta-MnO2@CNTs/CNTs composite films for direct use of supercapacitor electrodes. ACS Appl. Mater. Interfaces 2016, 8, 23721–23728. [Google Scholar] [CrossRef]
- Guo, K.; Zhang, G.; Long, Y.; Ning, H.; Xu, Z.; Qiu, T.; Luo, D.; Li, M.; Yao, R.; Peng, J. Modifying precursor solutions to obtain screen-printable inks for tungsten oxides electrochromic film preparation. Coatings 2021, 11, 872. [Google Scholar] [CrossRef]
Type | Flexible Form | Patterning | Stretch Direction | Fatigue Resistance | Process Complexity and Cost |
---|---|---|---|---|---|
Flexible stretchable material | Flexible material | Easily | Multiple Directions | Moderate | Simple, large-area preparation and low cost |
Structural design of stretchable materials | Structural deformation | Difficulty | Uniaxially/Biaxially | Good | Complex, small size, high cost, and high equipment requirements |
Material | Conductivity | Ultimate Tensile Rate | Reference |
---|---|---|---|
Solution-styrene butadiene rubber/Carbon black particles | 40 S/m | 200% | [52] |
Graphene foam/PDMS | 72 S/m | 60% | [53] |
SBR/rGO-CNT | 3.62 S/cm | 5% | [54] |
Fluorinated rubber/SWNTs | 100 S/m | 100% | [55] |
PUS-AgNW-PDMS | 19.2 S/cm | 100% | [56] |
Single covered yarn-AgNW fiber | 4018 S/cm | 500% | [57] |
Electrode Material | Preparation Method | Ultimate Tensile Rate | Wear-and-TearLife | Reference |
---|---|---|---|---|
CNT array | Chemical vapor deposition | 30% | Maintain performance after 30% tensile strain | [64] |
CNTs fibers | Pre-stretching | 100% | Maintain performance after 100% cyclic tensile strain | [65] |
CNTs nano-tablets | Chemical vapor deposition | 100% | Maintain 84% performance after 200 tensile cycles at 100% tensile strain | [66] |
Graphene paper | Solution method | 800% | Maintain performance after 1000 tensile cycles | [67] |
Graphene/CNTs fibers | Wet-spinning | 800% | Maintain 77% performance at 800% tensile strain | [68] |
MnO2 nanowires/Cellulose nanofibers/CNTs | Hydrothermal method | 500% | Maintain 96% performance at 400% tensile strain | [69] |
MnO2/Graphene/Ni | Chemical vapor deposition | 100% | Maintain 92% performance at 100% tensile strain | [70] |
MoS2/CNTs | Chemical vapor deposition, Immersion method | 240% | Maintain performance after 240% tensile strain | [71] |
CNTs/Silver nanoparticles | Electrospinning | 550% | Maintain performance at 550% strain tensile range | [72] |
Electrode Material | Preparation Method | Ultimate Tensile Rate | Wear-and-Tear Life | Application | Reference |
---|---|---|---|---|---|
V2O5/PEDOT/PDMS | Spin coating | 50% | Maintain 85% capacitance after 100 tensile cycles | Supercapacitor | [81] |
SWCNTs/BNNT/ PDMS | Dry pressure | 50% | After 1000 tensile cycles at 50% strain, the capacitance increases by 25% | Supercapacitor | [82] |
Graphene/PDMS | Chemical vapor deposition | 1.3% | Maintain performance after 300 cycles | Pressure sensor | [83] |
AgNWs/PDMS | Coating | 70% | 70% tensile rate strain | Strain sensor | [84] |
PPy/PU | Chemical polymerization | 100% | Maintain 90% capacitance after 1000 times of 100% tensile strain | Supercapacitor | [85] |
SWCNTs/Ecoflex | Coating | 60% | After 1000 charge discharge cycles, the capacitance remains 97.4% | Supercapacitor | [86] |
Polyaniline-multi-carbon nanotube/ PEDOT:PSS | Electropolymerization | 50% | The CV Curve remained unchanged after 30 tensile cycles at 50% strain | Supercapacitor | [87] |
SWCNTs/PEDOT:PSS | Spin coating | 100% | Maintain performance after 1000 times of 20% tensile strain | Strain sensor | [88] |
ZnS:M2+(Mn/Cu)@ Al2O3/PDMS | 20% | Maintain performance during 10,000 bending and stretching cycles | Touch sensor | [89] | |
TPU/AgNWs/rGO | Spray | 200% | Maintain performance after 200% tensile strain | Nano Generator | [90] |
PDMS/CNTs fibers/Graphene nanoplates | Spin coating | 50% | Maintain performance after 1000 stretch cycles | Strain sensor | [91] |
Preparation Process | Advantages | Disadvantages |
---|---|---|
Phase conversion method | Simple operation, efficient and mean pore diameter | Small scope of application |
Chemical oxidation polymerization method | Simple operation, fast synthesis speed and large output | The control of polymerization process is difficult |
Electrochemical deposition | Plasticity, uniformity, controllable thickness and uniform surface | High cost |
Chemical vapor deposition | Good wrapping plating, Controllable thickness | High by-products, Not bendable |
Physical vapor deposition | Wide application range, Environmental protection | Poor uniformity |
Electrospinning technology | Easy to operate, one step shaping, good uniformity and mass production | Low productivity, High cost, Relative product instability |
Coating, Printing, and Spraying | Simple equipment, easy process control and easy doping | Inefficient, Poor uniformity |
3D printing | Ability to create any geometric shape, Capability of highly accurate conformal deposition, Good mechanical bending | High cost |
Vacuum suction | Controllable composition, controllable thickness and well-distributed | Weak mechanical strength |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hou, W.; Liao, Q.; Xie, S.; Song, Y.; Qin, L. Prospects and Challenges of Flexible Stretchable Electrodes for Electronics. Coatings 2022, 12, 558. https://doi.org/10.3390/coatings12050558
Hou W, Liao Q, Xie S, Song Y, Qin L. Prospects and Challenges of Flexible Stretchable Electrodes for Electronics. Coatings. 2022; 12(5):558. https://doi.org/10.3390/coatings12050558
Chicago/Turabian StyleHou, Wei, Qingwei Liao, Shuang Xie, Yujun Song, and Lei Qin. 2022. "Prospects and Challenges of Flexible Stretchable Electrodes for Electronics" Coatings 12, no. 5: 558. https://doi.org/10.3390/coatings12050558
APA StyleHou, W., Liao, Q., Xie, S., Song, Y., & Qin, L. (2022). Prospects and Challenges of Flexible Stretchable Electrodes for Electronics. Coatings, 12(5), 558. https://doi.org/10.3390/coatings12050558