Pyrrol-Anthracene: Synthesis, Characterization and Its Application as Active Material in Humidity, Temperature and Light Sensors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of PAD
2.2. Sensor Fabrication
2.3. PAD Thin Film and Sensor Characterization
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Köse, R. An evaluation of wind energy potential as a power generation source in Kütahya, Turkey. Energy Convers. Manag. 2004, 45, 1631–1641. [Google Scholar] [CrossRef]
- Liguras, D.K.; Kondarides, D.I.; Verykios, X.E. Production of hydrogen for fuel cells by steam reforming of ethanol over supported noble metal catalysts. Appl. Catal. B Environ. 2003, 43, 345–354. [Google Scholar] [CrossRef]
- Zeb, M.; Tahir, M.; Muhammad, F.; Mohd Said, S.; Mohd Sabri, M.F.; Sarker, M.R.; Hamid Md Ali, S.; Wahab, F. Amplified spontaneous emission and optical gain in organic single crystal quinquethiophene. Crystals 2019, 9, 609. [Google Scholar] [CrossRef] [Green Version]
- Suri, K.; Annapoorni, S.; Sarkar, A.K.; Tandon, R.P. Gas and humidity sensors based on iron oxide–polypyrrole nanocomposites. Sensors Actuators B Chem. 2002, 81, 277–282. [Google Scholar] [CrossRef]
- Deb, S.K. Opportunities and challenges in science and technology of WO3 for electrochromic and related applications. Sol. Energy Mater. Sol. Cells 2008, 92, 245–258. [Google Scholar] [CrossRef]
- Yan, H.; Chen, Z.; Zheng, Y.; Newman, C.; Quinn, J.R.; Dötz, F.; Kastler, M.; Facchetti, A. A high-mobility electron-transporting polymer for printed transistors. Nature 2009, 457, 679–686. [Google Scholar] [CrossRef]
- Schriever, C.; Barbatti, M.; Stock, K.; Aquino, A.J.A.; Tunega, D.; Lochbrunner, S.; Riedle, E.; de Vivie-Riedle, R.; Lischka, H. The interplay of skeletal deformations and ultrafast excited-state intramolecular proton transfer: Experimental and theoretical investigation of 10-hydroxybenzo[h]quinoline. Chem. Phys. 2008, 347, 446–461. [Google Scholar] [CrossRef]
- Freeman, C.G.; Litjens, R.A.J.; Quickenden, T.I. Visible and near-ultraviolet absorption spectrum of liquid water. Appl. Opt. Vol. 1999, 38, 1216–1223. [Google Scholar] [CrossRef]
- Tahir, M.; Ilyas, M.; Aziz, F.; Sarker, M.R.; Zeb, M.; Ibrahim, M.A.; Mohamed, R. Fabrication and microelectronic properties of hybrid organic–inorganic (poly(9,9, dioctylfluorene)/p-Si) heterojunction for electronic applications. Appl. Sci. 2020, 10, 7974. [Google Scholar] [CrossRef]
- Koh, J.H.; Sorge, E.; Wen, T.C.; Shetty, D.K. Thermal expansion behaviors of yttrium tungstates in the WO3-Y2O3 system. Ceram. Int. 2013, 39, 8421–8427. [Google Scholar] [CrossRef]
- Hara, M.; Kondo, T.; Komoda, M.; Ikeda, S.; Kondo, J.N.; Domen, K.; Hara, M.; Shinohara, K.; Tanaka, A. Cu2O as a photocatalyst for overall water splitting under visible light irradiation. Chem. Commun. 1998, 3, 357–358. [Google Scholar] [CrossRef]
- Muhammad, F.; Tahir, M.; Zeb, M.; Kalasad, M.N.; Mohd Said, S.; Sarker, M.R.; Sabri, M.F.M.; Ali, S.H.M. Synergistic enhancement in the microelectronic properties of poly-(dioctylfluorene) based Schottky devices by CdSe quantum dots. Sci. Rep. 2020, 10, 1–13. [Google Scholar] [CrossRef]
- Le Houx, N.; Pourroy, G.; Camerel, F.; Comet, M.; Spitzer, D. WO3nanoparticles in the 5−30 nm range by solvothermal synthesis under microwave or resistive heating. J. Phys. Chem. C 2010, 114, 155–161. [Google Scholar] [CrossRef]
- Tahir, M.; Sayyad, M.H.; Clark, J.; Wahab, F.; Aziz, F.; Shahid, M.; Munawar, M.A.; Chaudry, J.A. Humidity, light and temperature dependent characteristics of Au/N-BuHHPDI/Au surface type multifunctional sensor. Sens. Actuators B Chem. 2014, 192, 565–571. [Google Scholar] [CrossRef]
- Chen, Z.; Zhao, D.; Ma, R.; Zhang, X.; Rao, J.; Yin, Y.; Wang, X.; Yi, F. Flexible temperature sensors based on carbon nanomaterials. J. Mater. Chem. B 2021, 9, 1941–1964. [Google Scholar] [CrossRef]
- Khan, D.N.; Sayyad, M.H.; Tahir, M.; Wahab, F.; Yaseen, M.; Ali, M.; Munawar, M.A. The sensing of humidity by surface-type ag/formyl-tippcu(ii)/ag sensor for environmental monitoring. Surf. Rev. Lett. 2014, 21, 1450048. [Google Scholar] [CrossRef]
- Muhammad, F.; Tahir, M.; Zeb, M.; Wahab, F.; Kalasad, M.N.; Khan, D.N.; Karimov, K.S. Cadmium selenide quantum dots: Synthesis, characterization and their humidity and temperature sensing properties with poly-(dioctylfluorene). Sens. Actuators B Chem. 2019, 285, 504–512. [Google Scholar] [CrossRef]
- Tahir, M.; Sayyad, M.H.; Wahab, F.; Aziz, F.; Shahid, M.; Munawar, M.A. Perylene diimide: Synthesis, fabrication and temperature dependent electrical characterization of heterojunction with p-silicon. Phys. B Condens. Matter 2013, 426, 6–12. [Google Scholar] [CrossRef]
- Wajid, A.; Tahir, M.; Arif; Uddin, S.I.; Wahab, F. Humidity and temperature dependent characteristics of Ag/SnNcCl2/Ag surface type multifunctional sensor. Surf. Rev. Lett. 2019, 27, 1950148. [Google Scholar] [CrossRef]
- Zou, Y.; Clark, J.D.; May, A.A. A systematic investigation on the effects of temperature and relative humidity on the performance of eight low-cost particle sensors and devices. J. Aerosol. Sci. 2021, 152, 105715. [Google Scholar] [CrossRef]
- Speranza, G. Carbon nanomaterials: Synthesis, functionalization and sensing applications. Nanomaterials 2021, 11, 967. [Google Scholar] [CrossRef] [PubMed]
- Tahir, M.; Zeb, M.; Alamgeer; Hussain, S.; Sarker, M.R.; Khan, D.N.; Wahab, F.; Ali, S.H.M. Cuprous oxide nanoparticles: Synthesis, characterization, and their application for enhancing the humidity-sensing properties of poly(dioctylfluorene). Polymers 2022, 14, 1503. [Google Scholar] [CrossRef] [PubMed]
- Meng, J.; Ma, J.N.; Li, J.; Yan, H.; Meng, F. Humidity sensing and temperature response performance of polymer gel cold-spliced optical fiber Fabry-Perot interferometer. Opt. Fiber Technol. 2022, 68, 102823. [Google Scholar] [CrossRef]
- Ali, S.; Jameel, M.A.; Harrison, C.J.; Gupta, A.; Shafiei, M.; Langford, S.J. Nanoporous naphthalene diimide surface enhances humidity and ammonia sensing at room temperature. Sens. ActuatorsB Chem. 2022, 351, 130972. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, J.; Zhang, Y.; Guo, W.; Ruan, S. Characterization and humidity sensing properties of the sensor based on Na2Ti3O7 nanotubes. J. Nanosci. Nanotechnol. 2014, 14, 4303–4307. [Google Scholar] [CrossRef]
- Al-Sehemi, A.G.; Al-Assiri, M.S.; Kalam, A.; Zafar, Q.; Azmer, M.I.; Sulaiman, K.; Ahmad, Z. Sensing performance optimization by tuning surface morphology of organic (D-π-A) dye based humidity sensor. Sens. Actuators B Chem. 2016, 231, 30–37. [Google Scholar] [CrossRef]
- Najeeb, M.A.; Ahmad, Z.; Shakoor, R.A. Organic thin-film capacitive and resistive humidity sensors: A focus review. Adv. Mater. Interfaces 2018, 5, 1800969. [Google Scholar] [CrossRef]
- Ali, S.; Jameel, M.A.; Gupta, A.; Langford, S.J.; Shafiei, M. Capacitive humidity sensing performance of naphthalene diimide derivatives at ambient temperature. Synth. Met. 2021, 275, 116739. [Google Scholar] [CrossRef]
- Gu, L.; Zheng, K.; Zhou, Y.; Li, J.; Mo, X.; Patzke, G.R.; Chen, G. Humidity sensors based on ZnO/TiO2 core/shell nanorod arrays with enhanced sensitivity. Sens. Actuators B Chem. 2011, 159, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Li, L.Y.; Dong, Y.F.; Jiang, W.F.; Ji, H.F.; Li, X.J. High-performance capacitive humidity sensor based on silicon nanoporous pillar array. Thin Solid Films 2008, 517, 948–951. [Google Scholar] [CrossRef]
- Chen, Z.; Lu, C. Humidity sensors: A review of materials and mechanisms. Sens. Lett. 2005, 3, 274–295. [Google Scholar] [CrossRef] [Green Version]
- Ali, S.; Jameel, M.A.; Harrison, C.J.; Gupta, A.; Evans, R.A.; Shafiei, M.; Langford, S.J. Enhanced capacitive humidity sensing performance at room temperature via hydrogen bonding of cyanopyridone-based oligothiophene donor. Chemosensors 2021, 9, 320. [Google Scholar] [CrossRef]
- Ali, S.; Tahir, M.; Mehboob, N.; Wahab, F.; Langford, S.J.; Said, S.M.; Sarker, M.R.; Julai, S.; Ali, S.H.M. Amino anthraquinone: Synthesis, characterization, and its application as an active material in environmental sensors. Materials 2020, 13, 960. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saleem, M.; Sayyad, M.H.; Karimov, K.S.; Yaseen, M.; Ali, M. Cu(II) 5,10,15,20-tetrakis(4′-isopropylphenyl) porphyrin based surface-type resistive-capacitive multifunctional sensor. Sens. Actuators B Chem. 2009, 137, 442–446. [Google Scholar] [CrossRef]
- Tahir, M.; Hassan Sayyad, M.; Wahab, F.; Ahmad Khalid, F.; Aziz, F.; Naeem, S.; Naeem Khalid, M. Enhancement in the sensing properties of methyl orange thin film by TiO2 nanoparticles. Int. J. Mod. Phys. B 2014, 28, 1450032. [Google Scholar] [CrossRef]
- Aziz, F.; Sayyad, M.H.; Sulaiman, K.; Majlis, B.H.; Karimov, K.S.; Ahmad, Z.; Sugandi, G. Corrigendum: Influence of humidity conditions on the capacitive and resistive response of an Al/VOPc/Pt co-planar humidity sensor. Meas. Sci. Technol. 2012, 23, 069501. [Google Scholar] [CrossRef]
- Khan, M.U.; Hassan, G.; Bae, J. Bio-compatible organic humidity sensor based on natural inner egg shell membrane with multilayer crosslinked fiber structure. Sci. Rep. 2019, 9, 5824. [Google Scholar] [CrossRef] [Green Version]
- Mohamed Safian, N.A.; Anuar, A.; Omar, A.Z.; Bawazeer, T.M.; Alsenany, N.; Alsoufi, M.S.; Supangat, A.; Roslan, N.A. Enhanced sensitivity of zinc phthalocyanine-based microporous humidity sensors by varying size of electrode gaps. Sens. Actuators B Chem. 2021, 343, 130158. [Google Scholar] [CrossRef]
S. No. | Energy Bands (cm−1) | Bonds Nature/Dynamics |
---|---|---|
1 | 605 | C-H stretching |
2 | 653 | C-H with alkenes out of plane bending |
3 | 709 | =C-H with aromatic out of plane bending |
4 | 829 | =C-H with aromatic out of plane bending |
5 | 933 | =C-H with aromatic out of plane bending |
6 | 1097 | C-N stretch |
7 | 1286 | C-N stretch |
8 | 1325 | C-N stretch |
9 | 1392 | -CH2 bending |
10 | 1585 | C=C within aromatic ring |
11 | 1666 | C=O with amide |
12 | 2362 | C=C conjugated stretching |
Device | Relative Humidity | Temperature | Illumination | References | ||
---|---|---|---|---|---|---|
Sensitivity (pF/%RH) | Range (%RH) | Sensitivity (pF/K) | Range (K) | Sensitive Range (lx) | ||
Ag/CuTIPP/Ag | 3.40 | 44–92 | 0.2 | 298–423 | - | [34] |
Au/AAq/Au | 0.40 | 40–88 | 0.87 | 295–388 | - | [33] |
Ag/Mo/Ag | 3.10 | 35–95 | 0.2 | 333–473 | - | [35] |
Au/N-BuHHPDI/Au | 20.00 | 60–90 | 0.05 | 400–460 | 7000–25,000 | [14] |
Al/VoPc/Pt | 2.53 | 60–90 | - | - | - | [36] |
Ag/IESM/Ag | 0.42 | 20–90 | - | - | - | [37] |
Al/ZnPc/Al | 1.03 | 20–95 | - | - | - | [38] |
Ag/PAD/Ag | 3.46 | 15–93 | 0.82 | 293–382 | 1500–20,000 | Present Work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zeb, M.; Tahir, M.; Muhammad, F.; Gul, Z.; Wahab, F.; Sarker, M.R.; Saad, M.H.M.; Alamgeer; Ali, S.; Ilyas, S.Z.; et al. Pyrrol-Anthracene: Synthesis, Characterization and Its Application as Active Material in Humidity, Temperature and Light Sensors. Coatings 2022, 12, 848. https://doi.org/10.3390/coatings12060848
Zeb M, Tahir M, Muhammad F, Gul Z, Wahab F, Sarker MR, Saad MHM, Alamgeer, Ali S, Ilyas SZ, et al. Pyrrol-Anthracene: Synthesis, Characterization and Its Application as Active Material in Humidity, Temperature and Light Sensors. Coatings. 2022; 12(6):848. https://doi.org/10.3390/coatings12060848
Chicago/Turabian StyleZeb, Muhammad, Muhammad Tahir, Fida Muhammad, Zahid Gul, Fazal Wahab, Mahidur R. Sarker, Mohamad Hanif Md Saad, Alamgeer, Shabina Ali, Syed Zafar Ilyas, and et al. 2022. "Pyrrol-Anthracene: Synthesis, Characterization and Its Application as Active Material in Humidity, Temperature and Light Sensors" Coatings 12, no. 6: 848. https://doi.org/10.3390/coatings12060848