High-Performance Dielectric Ceramic for Energy Storage Capacitors
Funding
Conflicts of Interest
References
- Kousksou, T.; Bruel, P.; Jamil, A.; El Rhafiki, T.; Zeraouli, Y. Energy storage: Applications and challenges. Sol. Energy Mater. Sol. Cells 2014, 120, 59–80. [Google Scholar] [CrossRef]
- Banerjee, P.; Perez, I.; Henn-Lecordier, L.; Lee, S.B.; Rubloff, G.W. Nanotubular metal-insulator-metal capacitor arrays for energy storage. Nat. Nanotechnol. 2009, 4, 292–296. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Wang, Y.; Zhou, X.; Zhang, Q.M.; Zhang, S. High field tunneling as a limiting factor of maximum energy density in dielectric energy storage capacitors. Appl. Phys. Lett. 2008, 92, 142909. [Google Scholar] [CrossRef]
- Ma, W.; Zhu, Y.; Marwat, M.A.; Fan, P.; Xie, B.; Salamon, D.; Ye, Z.-G.; Zhang, H. Enhanced energy-storage performance with excellent stability under low electric fields in BNT-ST relaxor ferroelectric ceramics. J. Mater. Chem. C 2019, 7, 281–288. [Google Scholar] [CrossRef]
- Yan, F.; Bai, H.; Zhou, X.; Ge, G.; Li, G.; Shen, B.; Zhai, J. Realizing superior energy storage properties in lead-free ceramics via a macro-structure design strategy. J. Mater. Chem. A 2020, 8, 11656. [Google Scholar] [CrossRef]
- Zhou, H.Y.; Zhu, X.N.; Ren, G.R.; Chen, X.M. Enhanced energy storage density and its variation tendency in CaZrxTi1−xO3 ceramics. J. Alloys Compd. 2016, 688, 687–691. [Google Scholar] [CrossRef]
- Li, L.; Yu, X.; Cai, H.; Liao, Q.; Han, Y.; Gao, Z. Preparation and dielectric properties of BaCu(B2O5)-doped SrTiO3-based ceramics for energy storage. Mater. Sci. Eng. B-Adv. 2013, 178, 1509–1514. [Google Scholar] [CrossRef]
- Li, F.; Zhang, S.; Yang, T.; Xu, Z.; Zhang, N.; Liu, G.; Wang, J.; Wang, J.; Cheng, Z.; Ye, Z.-G.; et al. The origin of ultrahigh piezoelectricity in relaxor-ferroelectric solid solution crystals. Nat. Commun. 2016, 7, 13807. [Google Scholar] [CrossRef]
- Zhao, C.; Huang, Y.; Wu, J. Multifunctional barium titanate ceramics via chemical modification tuning phase structure. InfoMat 2020, 2, 1163–1190. [Google Scholar] [CrossRef]
- Qu, B.; Du, H.; Yang, Z. Lead-free relaxor ferroelectric ceramics with high optical transparency and energy storage ability. J. Mater. Chem. C 2016, 4, 1795–1803. [Google Scholar] [CrossRef]
- Zhang, Q.; Tong, H.; Chen, J.; Lu, Y.; Yang, T.; Yao, X.; He, Y. High recoverable energy density over a wide temperature range in Sr modified (Pb,La)(Zr,Sn,Ti)O3 antiferroelectric ceramics with an orthorhombic phase. Appl. Phys. Lett. 2016, 109, 262901. [Google Scholar] [CrossRef]
- Dong, X.; Li, X.; Chen, X.; Chen, H.; Sun, C.; Shi, J.; Pang, F.; Zhou, H. High energy storage density and power density achieved simultaneously in NaNbO3-based lead-free ceramics via antiferroelectricity enhancement. J. Mater. 2021, 7, 629–639. [Google Scholar] [CrossRef]
- Peng, B.; Zhang, Q.; Li, X.; Sun, T.; Fan, H.; Ke, S.; Ye, M.; Wang, Y.; Lu, W.; Niu, H.; et al. Giant electric energy density in epitaxial lead-free thin films with coexistence of ferroelectrics and antiferroelectrics. Adv. Electron. Mater. 2015, 1, 1500052. [Google Scholar] [CrossRef] [Green Version]
- Joseph, J.; Cheng, Z.; Zhang, S. NaNbO3 modified BiScO3-BaTiO3 dielectrics for high-temperature energy storage applications. J. Mater. 2022, in press. [Google Scholar] [CrossRef]
- Peddigari, M.; Palneedi, H.; Hwang, G.-T.; Lim, K.W.; Kim, G.-Y.; Jeong, D.-Y.; Ryu, J. Boosting the recoverable energy density of lead-free ferroelectric ceramic thick films through artificially induced quasi-relaxor behavior. ACS Appl. Mater. Interfaces 2018, 10, 20720. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Li, F.; Xu, Z.; Zhang, S. Multilayer lead-free ceramic capacitors with ultrahigh energy density and efficiency. Adv. Mater. 2018, 30, 1802155. [Google Scholar] [CrossRef]
- Huang, W.; Chen, Y.; Li, X.; Wang, G.; Xia, J.; Dong, X. Superior energy storage performances achieved in (Ba,Sr)TiO3-based bulk ceramics through composition design and Core-shell structure engineering. Chem. Eng. J. 2022, 444, 135523. [Google Scholar] [CrossRef]
- Da Shi, R.; Ma, X.; Ma, P.P.; Zhu, X.L.; Fu, M.S.; Chen, X.M. Ba-based complex perovskite ceramics with superior energy storage characteristics. J. Am. Ceram. Soc. 2020, 103, 6389–6399. [Google Scholar] [CrossRef]
- Wang, J.; Jiang, S.; Jiang, D.; Tian, J.; Li, Y.; Wang, Y. Microstructural design of BaTiO3-based ceramics for temperature-stable multilayer ceramic capacitors. Ceram. Int. 2012, 38, 5853–5857. [Google Scholar] [CrossRef]
- Wang, J.; Jiang, S.; Jiang, D.; Wang, T.; Yao, H. Effects of Sn on the microstructure and dielectric properties in BaTiO3-based ceramics. Ceram. Int. 2013, 39, 3657–3662. [Google Scholar] [CrossRef]
- Lu, Z.; Wang, G.; Bao, W.; Li, J.; Li, L.; Mostaed, A.; Yang, H.; Ji, H.; Li, D.; Feteira, A.; et al. Superior energy density through tailored dopant strategies in multilayer ceramic capacitors. Energ. Environ. Sci. 2020, 13, 2938–2948. [Google Scholar] [CrossRef]
- Hao, X. A review on the dielectric materials for high energy-storage application. J. Adv. Dielectr. 2013, 3, 1330001. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J. High-Performance Dielectric Ceramic for Energy Storage Capacitors. Coatings 2022, 12, 889. https://doi.org/10.3390/coatings12070889
Wang J. High-Performance Dielectric Ceramic for Energy Storage Capacitors. Coatings. 2022; 12(7):889. https://doi.org/10.3390/coatings12070889
Chicago/Turabian StyleWang, Jing. 2022. "High-Performance Dielectric Ceramic for Energy Storage Capacitors" Coatings 12, no. 7: 889. https://doi.org/10.3390/coatings12070889
APA StyleWang, J. (2022). High-Performance Dielectric Ceramic for Energy Storage Capacitors. Coatings, 12(7), 889. https://doi.org/10.3390/coatings12070889