The Importance of Structure and Corrosion Resistance of Steels/Alloys
Funding
Conflicts of Interest
References
- Li, Z.M.; Pradeep, K.G.; Deng, Y.; Raabe, D.; Tasan, C.C. Metastable high-entropy dual-phase alloys overcome the strength–ductility trade-off. Nature 2016, 534, 227–230. [Google Scholar]
- Roodgari, M.R.; Jamaati, R.; Aval, J.H. A new method to produce dual-phase steel. Mater. Sci. Eng. A 2021, 803, 140695. [Google Scholar]
- Lo, K.H.; Shek, C.H.; Lai, J.K.L. Recent developments in stainless steels. Mater. Sci. Eng. R 2009, 4, 39–104. [Google Scholar]
- Song, Z.G.; Feng, H.; Hu, S.M. Development of Chinese duplex stainless steel in recent years. J. Iron. Steel. Res. Int 2017, 2, 121–130. [Google Scholar]
- Kim, D.W.; Kim, S.; Yang, J.; Lee, S.; Sohn, S.S. Enhancement of ballistic performance enabled by boron-doping in subzero-treated (ferrite+austenite+martensite) triplex lightweight steel. Mater. Charact. 2022, 190, 112021. [Google Scholar]
- Lu, K. Making strong nanomaterials ductile with gradients. Science 2014, 6203, 1455–1456. [Google Scholar]
- Wu, X.; Yang, M.; Yuan, F.; Wu, G.; Wei, Y.; Huang, X.; Zhu, Y. Heterogeneous lamella structure unites ultrafine-grain strength with coarse-grain ductility. Proc. Natl. Acad. Sci. USA 2015, 47, 14501. [Google Scholar]
- Gao, J.H.; Jiang, S.H.; Zhang, H.R.; Huang, Y.H.; Guan, D.K.; Xu, Y.D.; Guan, S.K.; Bendersky, L.A.; Davydov, A.V.; Wu, Y.; et al. Facile route to bulk ultrafine-grain steels for high strength and ductility. Nature 2021, 590, 262–267. [Google Scholar]
- Howe, A.A. Ultrafine grained steels: Industrial prospects. Mater. Sci. Technol. 2000, 11, 1264–1266. [Google Scholar]
- Wang, Y.M.; Chen, M.W.; Zhou, F.H.; Ma, E. High tensile ductility in a nanostructured metal. Nature 2002, 419, 912–915. [Google Scholar]
- Zhang, J.; Di, H.; Deng, Y.; Misra, R.D.K. Effect of martensite morphology and volume fraction on strain hardening and fracture behavior of martensite–ferrite dual phase steel. Mater. Sci. Eng. A 2015, 627, 230–240. [Google Scholar]
- Wang, Z.; Huang, M.X. Optimising the strength-ductility-toughness combination in ultra-high strength quenching and partitioning steels by tailoring martensite matrix and retained austenite. Int. J. Plasticity 2020, 134, 102851. [Google Scholar]
- Raabe, D.; Ponge, D.; Dmitrieva, O.; Sander, B. Nanoprecipitate-hardened 1.5GPa steels with unexpected high ductility. Scr. Mater. 2009, 60, 1141–1144. [Google Scholar]
- Zhao, Y.H.; Liao, X.Z.; Cheng, S.; Ma, E.; Zhu, Y.T. Simultaneously increasing the ductility and strength of nanostructured alloys. Adv. Mater. 2006, 18, 2280–2283. [Google Scholar]
- Jiang, S.H.; Wang, H.; Wu, Y.; Liu, X.J.; Chen, H.H.; Yao, M.J.; Gault, B.; Ponge, D.; Raabe, D.; Hirata, A.; et al. Ultrastrong steel via minimal lattice misfit and high-density nanoprecipitation. Nature 2017, 544, 460–464. [Google Scholar]
- He, B.B.; Hu, B.; Yen, H.W.G.; Cheng, J.; Wang, Z.K.; Luo, H.W.; Huang, M.X. High dislocation density–induced large ductility in deformed and partitioned steels. Science 2017, 6355, 1029–10321. [Google Scholar]
- Lei, Z.F.; Liu, X.J.; Wu, Y.; Wang, H.; Jiang, S.H.; Wang, S.D.; Hui, X.D.; Wu, Y.D.; Gault, B.; Kontis, P.; et al. Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes. Nature 2018, 563, 546–550. [Google Scholar]
- Li, H.; Zong, H.X.; Li, S.Z.; Jin, S.B.; Chen, Y.; Cabral, M.J.; Chen, B.; Huang, Q.W.; Chen, Y.; Ren, Y.; et al. Uniting tensile ductility with ultrahigh strength via composition undulation. Nature 2022, 604, 273–279. [Google Scholar]
- Ding, Q.Q.; Zhang, Y.; Chen, X.; Fu, X.Q.; Chen, D.K.; Chen, S.J.; Gu, L.; Wei, F.; Bei, H.B.; Gao, Y.F.; et al. Tuning element distribution, structure and properties by composition in high-entropy alloys. Nature 2019, 574, 223–227. [Google Scholar]
- Chen, S.; Aitken, Z.H.; Pattamatta, S.; Wu, Z.; Yu, Z.G.; Srolovitz, D.J.; Liaw, P.K.; Zhang, Y.W. Simultaneously enhancing the ultimate strength and ductility of high-entropy alloys via short-range ordering. Nat. Commun. 2021, 1, 4953. [Google Scholar]
- Morcillo, M.; Chico, B.; Díaz, I.; Cano, H.; La Fuente, D.D. Atmospheric corrosion data of weathering steels. A review. Corros. Sci. 2013, 77, 6–24. [Google Scholar]
- Jia, J.; Liu, Z.; Cheng, X.; Du, C.; Li, X. Development and optimization of Ni-advanced weathering steel: A review. Corros. Commun. 2021, 2, 82–90. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Liu, W.; Li, N.; Zheng, C. The Importance of Structure and Corrosion Resistance of Steels/Alloys. Coatings 2022, 12, 997. https://doi.org/10.3390/coatings12070997
Wang Y, Liu W, Li N, Zheng C. The Importance of Structure and Corrosion Resistance of Steels/Alloys. Coatings. 2022; 12(7):997. https://doi.org/10.3390/coatings12070997
Chicago/Turabian StyleWang, Yongqiang, Wenlong Liu, Na Li, and Chengsi Zheng. 2022. "The Importance of Structure and Corrosion Resistance of Steels/Alloys" Coatings 12, no. 7: 997. https://doi.org/10.3390/coatings12070997
APA StyleWang, Y., Liu, W., Li, N., & Zheng, C. (2022). The Importance of Structure and Corrosion Resistance of Steels/Alloys. Coatings, 12(7), 997. https://doi.org/10.3390/coatings12070997