Joining Superconducting MgB2 Parts by Spark Plasma Sintering: A New Technique with High Potential for Manufacturing Future Superconducting Devices
Abstract
:1. Introduction
2. Experimental Details
3. Results and Discussions
4. Conclusions
- This procedure induces no changes in the structural and microstructural properties of the samples. The soldered junction could not be discriminated from other locations in the sample by SEM imaging, demonstrating a good matching between the welded parts.
- The critical temperature of the soldered sample was the same as that of the unsoldered ones.
- Soldered and unsoldered samples have shown the same magnetic moment below Tc, suggesting that the superconducting currents can go through the soldering plane without degradation of the critical current density.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Akimitsu, J. Symposium on Transition Metal Oxides. In Proceedings of the Spintronics IX, Sendai, Japan, 10 January 2001. [Google Scholar]
- Nagamatsu, J.; Nakagawa, N.; Muranaka, T.; Zenitani, Y.; Akimitsu, J. Superconductivity at 39 K in magnesium diboride. Nature 2001, 410, 63–64. [Google Scholar] [CrossRef] [PubMed]
- Kang, W.N.; Kim, M.S.; Jung, C.U.; Kim, H.J.; Choi, E.M.; Park, M.S.; Lee, S.I. Origin of the high DC transport critical current density for the MgB2 superconductor. arXiv 2001, arXiv:cond-mat/0103176. [Google Scholar]
- Dhalle, M.; Toulemonde, P.; Beneduce, C.; Musolino, N.; Decroux, M.; Flukiger, R. Transport and inductive critical current densities in superconducting MgB2. Phys. C Supercond. 2001, 363, 155–165. [Google Scholar] [CrossRef] [Green Version]
- Ferdeghini, C.; Ferrando, V.; Grassano, G.; Ramadan, W.; Bellingeri, E.; Braccini, V.; Marre, D.; Putti, M.; Manfrinetti, P.; Palenzona, A.; et al. Kinetics of Biomass Thermal Decomposition. Chem. Pap. 2002, 56, 378–381. [Google Scholar]
- Bud’ko, S.L.; Kogan, V.G.; Canfield, P.C. Determination of superconducting anisotropy from magnetization data on random powders as applied to LuNi2B2C, YNi2B2C, and MgB2. Phys. Rev. B 2001, 64, 180506. [Google Scholar] [CrossRef] [Green Version]
- Bernstein, P.; Mosqueira, J.; Siejka, J.; Vidal, F.; Thimont, Y.; McLoughlin, C.; Ferro, G. Measurements of the surface critical current of YBa2Cu3O7−δ thin films: Probing the nonuniformity of their superconducting critical temperature along the c-axis. J. Appl. Phys. 2010, 107, 123901. [Google Scholar] [CrossRef]
- Prikhna, T.; Gawalek, W.; Novikov, N.; Savchuk, Y.; Moshchil, V.; Sergienko, N.; Wendt, M.; Dub, S.; Melnikov, V.; Surzhenko, A.; et al. High pressure synthesis and sintering of MgB2. IEEE Trans. Appl. Supercond. 2003, 13, 3506–3509. [Google Scholar] [CrossRef]
- Yao, W.; Bascuñán, J.; Hahn, S.; IwasaI, Y. MgB2 Coils for MRI Applications. IEEE Trans. Appl. Supercond. 2010, 20, 756–759. [Google Scholar] [CrossRef] [PubMed]
- Suarez, M.; Fernandes, A.; Menendez, J.L.; Torrecillas, R.; Kessel, H.U.; Hennicke, J.; Kirchner, R.; Kessel, T. Challenges and Opportunities for Spark Plasma Sintering: A Key Technology for a New Generation of Materials. In Sintering Applications; IntechOpen: London, UK, 2013. [Google Scholar] [CrossRef]
- Manière, C.; Durand, L.; Weibel, A.; Chevallier, G.; Estournes, C. A sacrificial material approach for spark plasma sintering of complex shapes. Scr. Mater. 2016, 124, 126–128. [Google Scholar] [CrossRef]
- Hughes, L.A.; van Benthem, K. Spark Plasma Sintering Apparatus Used for the Formation of Strontium Titanate Bicrystals. J. Vis. Exp. 2017, 120, 55223. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Naka, M. In situ joining of dissimilar nanocrystalline materials by spark plasma sintering. Scr. Mater. 2003, 48, 1225–1230. [Google Scholar] [CrossRef]
- Prikhna, T.; Gawalek, W.; Eisterer, M.; Weber, H.W.; Monastyrov, M.; Sokolovsky, V.; Noudem, J.; Moshchil, V.; Karpets, M.; Kovylaev, V.; et al. The effect of high-pressure synthesis on flux pinning in MgB2-based. Phys. C Supercond. 2012, 479, 111–114. [Google Scholar] [CrossRef]
- Noudem, J.G.; Aburras, M.; Bernstein, P.; Chaud, X.; Muralidhar, M.; Murakami, M. Development in processing of MgB2 cryo-magnet superconductors. J. Appl. Phys. 2014, 116, 163916. [Google Scholar] [CrossRef]
D (Between V Electrodes) (mm) | Length (mm) | Width (mm) | High (mm) | |
---|---|---|---|---|
Reference | 1.87 | 2.82 | 1.65 | 1.63 |
n1 | 1.91 | 2.88 | 1.206 | 1.63 |
n2 | 1.34 | 2.58 | 1.43 | 1.56 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thimont, Y.; Xing, Y.; Bernstein, P.; Miryala, M.; Noudem, J. Joining Superconducting MgB2 Parts by Spark Plasma Sintering: A New Technique with High Potential for Manufacturing Future Superconducting Devices. Coatings 2022, 12, 1151. https://doi.org/10.3390/coatings12081151
Thimont Y, Xing Y, Bernstein P, Miryala M, Noudem J. Joining Superconducting MgB2 Parts by Spark Plasma Sintering: A New Technique with High Potential for Manufacturing Future Superconducting Devices. Coatings. 2022; 12(8):1151. https://doi.org/10.3390/coatings12081151
Chicago/Turabian StyleThimont, Yohann, Yiteng Xing, Pierre Bernstein, Muralidhar Miryala, and Jacques Noudem. 2022. "Joining Superconducting MgB2 Parts by Spark Plasma Sintering: A New Technique with High Potential for Manufacturing Future Superconducting Devices" Coatings 12, no. 8: 1151. https://doi.org/10.3390/coatings12081151
APA StyleThimont, Y., Xing, Y., Bernstein, P., Miryala, M., & Noudem, J. (2022). Joining Superconducting MgB2 Parts by Spark Plasma Sintering: A New Technique with High Potential for Manufacturing Future Superconducting Devices. Coatings, 12(8), 1151. https://doi.org/10.3390/coatings12081151