Morphology and Structure of Al2O3 + Graphene Low-Friction Composite Coatings
Abstract
:1. Introduction
2. Materials and Methods
2.1. Deposition of Coatings
- G1 rGO (AO-3, Graphene Laboratories Inc., New York City, NY, USA), with an average GNP thickness of 12 nm and an average lateral size 4500 nm;
- G2 rGO (0540DX, SkySpring Nanomaterials, Inc., Houston, TX, USA), with an average GNP thickness of 1–5 nm and an average lateral size of less than 2000 nm.
2.2. Characterization of Coatings
3. Results and Discussion
3.1. Morphology
3.2. Structure
4. Summary and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mang, T. (Ed.) Encyclopedia of Lubricants and Lubrication; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar]
- Erdemir, A. Solid Lubricants and Self-Lubricating Films. In Modern Tribology Handbook; CRC Press LLC: Boca Raton, FL, USA, 2001; Volume 2. [Google Scholar]
- Sun, J.; Du, S. Application of Graphene Derivatives and Their Nanocomposites in Tribology and Lubrication: A Review. RSC Adv. 2019, 9, 40642–40661. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, L.; Zhou, M.; Jin, L.; Li, L.; Mo, Y.; Su, G.; Li, X.; Zhu, H.; Tian, Y. Recent Advances in Friction and Lubrication of Graphene and Other 2D Materials: Mechanisms and Applications. Friction 2019, 7, 199–216. [Google Scholar] [CrossRef] [Green Version]
- Chouhan, A.; Mungse, H.P.; Khatri, O.P. Surface Chemistry of Graphene and Graphene Oxide: A Versatile Route for Their Dispersion and Tribological Applications. Adv. Colloid Interface Sci. 2020, 283, 102215. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Ge, X.; Li, J. Graphene Lubrication. Appl. Mater. Today 2020, 20, 100662. [Google Scholar] [CrossRef]
- Kasar, A.K.; Menezes, P.L. Synthesis and Recent Advances in Tribological Applications of Graphene. Int. J. Adv. Manuf. Technol. 2018, 97, 3999–4019. [Google Scholar] [CrossRef]
- Srivyas, P.D.; Charoo, M.S. Graphene: An Effective Lubricant for Tribological Applications. In Advances in Engineering Design; Prasad, A., Gupta, S.S., Tyagi, R.K., Eds.; Springer: Singapore, 2019; pp. 239–258. [Google Scholar]
- Feng, X.; Kwon, S.; Park, J.Y.; Salmeron, M. Superlubric Sliding of Graphene Nanoflakes on Graphene. ACS Nano 2013, 7, 1718–1724. [Google Scholar] [CrossRef]
- Li, J.; Li, J.; Luo, J. Superlubricity of Graphite Sliding against Graphene Nanoflake under Ultrahigh Contact Pressure. Adv. Sci. 2018, 5, 1800810. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.; Wani, M.F. Synthesis and Tribological Properties of Graphene: A Review. J. Tribol. 2017, 13, 36–71. [Google Scholar]
- Sarno, M.; Scarpa, D.; Senatore, A.; Ahmed Abdalglil Mustafa, W. RGO/GO Nanosheets in Tribology: From the State of the Art to the Future Prospective. Lubricants 2020, 8, 31. [Google Scholar] [CrossRef] [Green Version]
- Paul, G.; Hirani, H.; Kuila, T.; Murmu, N.C. Nanolubricants Dispersed with Graphene and Its Derivatives: An Assessment and Review of the Tribological Performance. Nanoscale 2019, 11, 3458–3483. [Google Scholar] [CrossRef]
- Manu, B.R.; Gupta, A.; Jayatissa, A.H. Tribological Properties of 2D Materials and Composites—A Review of Recent Advances. Materials 2021, 14, 1630. [Google Scholar] [CrossRef]
- Pietrzyk, B.; Miszczak, S.; Sun, Y.; Szymański, M. Al2O3 + Graphene Low-Friction Composite Coatings Prepared By Sol–Gel Method. Coatings 2020, 10, 858. [Google Scholar] [CrossRef]
- Hentour, K.; Turq, V.; Weibel, A.; Ansart, F.; Sobrino, J.-M.; Garcia, J.; Cardey, P.-F.; Laurent, C. Dispersion of Graphite Flakes into Boehmite Sols for the Preparation of Bi-Layer-Graphene/Alumina Coatings on Stainless Steel for Tribological Applications. J. Eur. Ceram. Soc. 2019, 39, 1304–1315. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.A.; Gong, X.F.; Yu, R.P.; Xing, Q.X.; Ling, P.; Wang, Z.X. Self-Lubrication and Wear-Resistance Mechanism of Graphene-Modified Coatings. Ceram. Int. 2020, 46, 15915–15924. [Google Scholar] [CrossRef]
- Venturi, F.; Pulsford, J.; Hussain, T. A Novel Approach to Incorporate Graphene Nanoplatelets to Cr2O3 for Low-Wear Coatings. Mater. Lett. 2020, 276, 128283. [Google Scholar] [CrossRef]
- Liu, C.; Sun, J.; Venturi, F.; Romero, A.R.; Hussain, T. Microstructure and Wear Performance of Alumina/Graphene Coating on Textured Al2O3/TiC Substrate Composites. J. Eur. Ceram. Soc. 2021, 41, 1438–1451. [Google Scholar] [CrossRef]
- Da, B.; Rongli, X.; Yongxin, G.; Yaxuan, L.; Aradhyula, T.V.; Yongwu, Z.; Yongguang, W. Tribological Behavior of Graphene Reinforced Chemically Bonded Ceramic Coatings. Ceram. Int. 2020, 46, 4526–4531. [Google Scholar] [CrossRef]
- Li, X.; Shen, Q.; Zhang, Y.; Wang, L.; Nie, C. Wear Behavior of Electrodeposited Nickel/Graphene Composite Coating. Diam. Relat. Mater. 2021, 119, 108589. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, F.; Zhang, Y.; Liu, Z.; Wang, X.; Du, C. Influence of Graphene Oxide on the Antiwear and Antifriction Performance of MAO Coating Fabricated on MgLi Alloy. Surf. Coat. Technol. 2019, 364, 144–156. [Google Scholar] [CrossRef]
- Mai, Y.J.; Zhou, M.P.; Ling, H.J.; Chen, F.X.; Lian, W.Q.; Jie, X.H. Surfactant-Free Electrodeposition of Reduced Graphene Oxide/Copper Composite Coatings with Enhanced Wear Resistance. Appl. Surf. Sci. 2018, 433, 232–239. [Google Scholar] [CrossRef]
- Shen, G.; Zhang, L.; Gu, Z.; Zheng, Z.; Liu, Y.; Tan, G.; Jie, X. Zinc Aluminum-Layered Double Hydroxide(LDH)-Graphene Oxide(GO) Lubricating and Corrosion-Resistant Composite Coating on the Surface of Magnesium Alloy. Surf. Coat. Technol. 2022, 437, 128354. [Google Scholar] [CrossRef]
- Zhang, R.; Yu, X.; Yang, Q.; Cui, G.; Li, Z. The Role of Graphene in Anti-Corrosion Coatings: A Review. Constr. Build. Mater. 2021, 294, 123613. [Google Scholar] [CrossRef]
- Ding, J.; Zhao, H.; Yu, H. Superior and Durable Graphene-Based Composite Coatings by Bioinspired Interfaces and Alignment. Compos. Sci. Technol. 2021, 214, 108967. [Google Scholar] [CrossRef]
- Qin, W.; Ma, J.; Liang, Q.; Li, J.; Tang, B. Tribological, Cytotoxicity and Antibacterial Properties of Graphene Oxide/Carbon Fibers/Polyetheretherketone Composite Coatings on Ti–6Al–4V Alloy as Orthopedic/Dental Implants. J. Mech. Behav. Biomed. Mater. 2021, 122, 104659. [Google Scholar] [CrossRef] [PubMed]
- Han, W.; Wu, Z.; Li, Y.; Wang, Y. Graphene Family Nanomaterials (GFNs)—Promising Materials for Antimicrobial Coating and Film: A Review. Chem. Eng. J. 2019, 358, 1022–1037. [Google Scholar] [CrossRef]
- Berman, D.; Erdemir, A.; Sumant, A.V. Few Layer Graphene to Reduce Wear and Friction on Sliding Steel Surfaces. Carbon 2013, 54, 454–459. [Google Scholar] [CrossRef]
- Liang, H.; Bu, Y.; Zhang, J. Graphene Oxide Film as Solid Lubricant. ACS Appl. Mater. Interfaces 2013, 5, 6369–6375. [Google Scholar] [CrossRef]
- Cheng, Z.; Andy, N.; Arvind, A. Ultrathin Graphene Tribofilm Formation during Wear of Al2O3–Graphene Composites. Nanomater. Energy 2016, 5, 1–9. [Google Scholar]
- Childres, I.; Jauregui, L.A.; Park, W.; Cao, H.; Chen, Y.P. Raman Spectroscopy of Graphene and Related Materials. In New Developments in Photon and Materials Research; Physics Research and Technology; Nova Science Publishers: New York, NY, USA, 2013; Volume 1, pp. 403–418. ISBN 978-1-62618-339-1. [Google Scholar]
- Gupta, A.; Chen, G.; Joshi, P.; Tadigadapa, S.; Eklund, P.C. Raman Scattering from High-Frequency Phonons in Supported n-Graphene Layer Films. Nano Lett. 2006, 6, 2667–2673. [Google Scholar] [CrossRef] [Green Version]
- Zhao, J.; Lizhao, L.; Fen, L. Graphene Oxide: Physics and Applications; Springer Briefs in Physics; Springer Heidelberg: New York, NY, USA, 2015; ISBN 978-3-662-44829-8. [Google Scholar]
Type of Coating | Substrate | Deposition Method | Average COF | Testing Distance (m) |
---|---|---|---|---|
Al2O3 + rGO [15] | 316 steel | Sol–gel dip coating | 0.11 | >100 |
Al2O3 + GNP [16] | 304L steel | Sol–gel dip coating | 0.14 | >250 |
WC-Co + GO [17] | 316 steel | Plasma spraying | 0.30 | - |
Cr2O3 + GNP [18] | 304 steel | Thermal spraying | 0.51 | >67 |
Al2O3 + GNP [19] | Al2O3/TiC | Thermal spraying | 0.38 | >35 |
Al2O3/ZnO/AP + GNP [20] | A3 steel | Aerosol spraying | 0.37 | - |
Ni + EGNP [21] | 304 steel | Electrodeposition | 0.16 | >150 |
MgO/SiO + GO [22] | Mg-Li alloy | Micro-arc oxidation | 0.15 | >63 |
Cu + rGO [23] | Cu-Zn alloy | Electrodeposition | 0.25 | >63 |
ZnAl-LDH + GO [24] | Mg-Al-Zn alloy | Cold spraying/electrostatic deposition | 0.20 | >75 |
Type of Coating | Annealing Temperature (°C) | Average COF | Distance to Failure (m) |
---|---|---|---|
Uncoated steel substrate | - | 0.88 ± 0.005 | - |
Al2O3 | 300 | 0.87 ± 0.086 | ~18 |
500 | 0.77 ± 0.078 | ~27 | |
Al2O3 + G1 rGO | 300 | 0.13 ± 0.004 | >100 |
500 | 0.11 ± 0.006 | >100 | |
Al2O3 + G2 rGO | 300 | 0.17 ± 0.005 | >100 |
500 | 0.51 ± 0.22 | ~65 |
Type of Powder/Coating | Annealing Temperature (°C) | ID/IG | I2D/IG |
---|---|---|---|
G1 rGO powder | – | 0.10 ± 0.08 | 0.36 ± 0.06 |
Al2O3 + G1 rGO | 300 | 0.22 ± 0.12 | 0.38 ± 0.09 |
Al2O3 + G1 rGO | 500 | 0.24 ± 0.11 | 0.39 ± 0.08 |
G2 rGO powder | – | 0.90 ± 0.05 | 0.34 ± 0.04 |
Al2O3 + G2 rGO | 300 | 1.26 ± 0.09 | 0.37 ± 0.12 |
Al2O3 + G2 rGO | 500 | 1.17 ± 0.10 | 0.35 ± 0.08 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miszczak, S.; Pietrzyk, B. Morphology and Structure of Al2O3 + Graphene Low-Friction Composite Coatings. Coatings 2022, 12, 1153. https://doi.org/10.3390/coatings12081153
Miszczak S, Pietrzyk B. Morphology and Structure of Al2O3 + Graphene Low-Friction Composite Coatings. Coatings. 2022; 12(8):1153. https://doi.org/10.3390/coatings12081153
Chicago/Turabian StyleMiszczak, Sebastian, and Bożena Pietrzyk. 2022. "Morphology and Structure of Al2O3 + Graphene Low-Friction Composite Coatings" Coatings 12, no. 8: 1153. https://doi.org/10.3390/coatings12081153
APA StyleMiszczak, S., & Pietrzyk, B. (2022). Morphology and Structure of Al2O3 + Graphene Low-Friction Composite Coatings. Coatings, 12(8), 1153. https://doi.org/10.3390/coatings12081153