Time-Resolved Photoluminescence in GeSn Film by New Infrared Streak Camera Attachment Based on a Broadband Light Upconversion
Abstract
:1. Introduction
2. Materials and Methods
3. Theoretical Background
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Göhler, B.; Lutzmann, P. Review on Short-Wavelength Infrared Laser Gated-Viewing at Fraunhofer IOSB. Opt. Eng. 2016, 56, 031203. [Google Scholar] [CrossRef] [Green Version]
- Yadav, P.; Dewan, S.; Mishra, R.; Das, S. Review of Recent Progress, Challenges, and Prospects of 2D Materials-Based Short Wavelength Infrared Photodetectors. J. Phys. D Appl. Phys. 2022, 55, 313001. [Google Scholar] [CrossRef]
- Wilson, R.H.; Nadeau, K.P.; Jaworski, F.B.; Tromberg, B.J.; Durkin, A.J. Review of Short-Wave Infrared Spectroscopy and Imaging Methods for Biological Tissue Characterization. J. Biomed. Opt. 2015, 20, 030901. [Google Scholar] [CrossRef] [PubMed]
- Tran, H.; Pham, T.; Margetis, J.; Zhou, Y.; Dou, W.; Grant, P.C.; Grant, J.M.; Al-Kabi, S.; Sun, G.; Soref, R.A.; et al. Si-Based GeSn Photodetectors toward Mid-Infrared Imaging Applications. ACS Photonics 2019, 6, 2807–2815. [Google Scholar] [CrossRef] [Green Version]
- Dong, Y.; Wang, W.; Xu, S.; Lei, D.; Gong, X.; Guo, X.; Wang, H.; Lee, S.-Y.; Loke, W.-K.; Yoon, S.-F.; et al. Two-Micron-Wavelength Germanium-Tin Photodiodes with Low Dark Current and Gigahertz Bandwidth. Opt. Express 2017, 25, 15818. [Google Scholar] [CrossRef]
- Cong, H.; Xue, C.; Zheng, J.; Yang, F.; Yu, K.; Liu, Z.; Zhang, X.; Cheng, B.; Wang, Q. Silicon Based GeSn P-i-n Photodetector for SWIR Detection. IEEE Photonics J. 2016, 8, 6804706. [Google Scholar] [CrossRef]
- Ščajev, P.; Onufrijevs, P.; Mekys, A.; Malinauskas, T.; Augulis, D.; Subačius, L.; Lee, K.; Kaupuzs, J.; Varnagiris, S.; Medvids, A.; et al. Extension of Spectral Sensitivity of GeSn IR Photodiode after Laser Annealing. Appl. Surf. Sci. 2021, 555, 149711. [Google Scholar] [CrossRef]
- Lee, K.; Lin, M.; Li, H.; Cheng, H.; Sun, G.; Soref, R.; Hendrickson, J.R.; Hung, K.; Scajev, P.; Medvids, A. Planar GeSn Photodiode for High-Detectivity Photodetection at 1550 Nm. Appl. Phys. Lett. 2020, 117, 012102. [Google Scholar] [CrossRef]
- Gnilitskyi, I.; Derrien, T.J.-Y.; Levy, Y.; Bulgakova, N.M.; Mocek, T.; Orazi, L. High-Speed Manufacturing of Highly Regular Femtosecond Laser-Induced Periodic Surface Structures: Physical Origin of Regularity. Sci. Rep. 2017, 7, 8485. [Google Scholar] [CrossRef] [Green Version]
- Chrétien, J.; Pauc, N.; Armand Pilon, F.; Bertrand, M.; Thai, Q.-M.; Casiez, L.; Bernier, N.; Dansas, H.; Gergaud, P.; Delamadeleine, E.; et al. GeSn Lasers Covering a Wide Wavelength Range Thanks to Uniaxial Tensile Strain. ACS Photonics 2019, 6, 2462–2469. [Google Scholar] [CrossRef]
- Atalla, M.R.M.; Assali, S.; Koelling, S.; Attiaoui, A.; Moutanabbir, O. High-Bandwidth Extended-SWIR GeSn Photodetectors on Silicon Achieving Ultrafast Broadband Spectroscopic Response. ACS Photonics 2022, 9, 1425–1433. [Google Scholar] [CrossRef]
- Zhou, Y.; Miao, Y.; Ojo, S.; Tran, H.; Abernathy, G.; Grant, J.M.; Amoah, S.; Salamo, G.; Du, W.; Liu, J.; et al. Electrically Injected GeSn Lasers on Si Operating up to 100 K. Optica 2020, 7, 924. [Google Scholar] [CrossRef]
- Julsgaard, B.; von den Driesch, N.; Tidemand-Lichtenberg, P.; Pedersen, C.; Ikonic, Z.; Buca, D. Carrier Lifetime of GeSn Measured by Spectrally Resolved Picosecond Photoluminescence Spectroscopy. Photonics Res. 2020, 8, 788. [Google Scholar] [CrossRef]
- Gerecke, M.; Bierhance, G.; Gutmann, M.; Ernsting, N.P.; Rosspeintner, A. Femtosecond Broadband Fluorescence Upconversion Spectroscopy: Spectral Coverage versus Efficiency. Rev. Sci. Instrum. 2016, 87, 053115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chosrowjan, H.; Taniguchi, S.; Tanaka, F. Ultrafast Fluorescence Upconversion Technique and Its Applications to Proteins. FEBS J. 2015, 282, 3003–3015. [Google Scholar] [CrossRef]
- Ashik, A.S.; O’Donnell, C.F.; Chaitanya Kumar, S.; Ebrahim-Zadeh, M.; Tidemand-Lichtenberg, P.; Pedersen, C. Mid-Infrared Upconversion Imaging Using Femtosecond Pulses. Photonics Res. 2019, 7, 783. [Google Scholar] [CrossRef]
- Sajadi, M.; Quick, M.; Ernsting, N.P. Femtosecond Broadband Fluorescence Spectroscopy by Down- and up-Conversion in β-Barium Borate Crystals. Appl. Phys. Lett. 2013, 103, 173514. [Google Scholar] [CrossRef]
- Zhang, X.-X.; Würth, C.; Zhao, L.; Resch-Genger, U.; Ernsting, N.P.; Sajadi, M. Femtosecond Broadband Fluorescence Upconversion Spectroscopy: Improved Setup and Photometric Correction. Rev. Sci. Instrum. 2011, 82, 063108. [Google Scholar] [CrossRef] [Green Version]
- Junaid, S.; Tomko, J.; Semtsiv, M.P.; Kischkat, J.; Masselink, W.T.; Pedersen, C.; Tidemand-Lichtenberg, P. Mid-Infrared Upconversion Based Hyperspectral Imaging. Opt. Express 2018, 26, 2203–2211. [Google Scholar] [CrossRef] [Green Version]
- Raissi, M.; Sajjad, M.T.; Pellegrin, Y.; Roland, T.J.; Jobic, S.; Boujtita, M.; Ruseckas, A.; Samuel, I.D.W.; Odobel, F. Size Dependence of Efficiency of PbS Quantum Dots in NiO-Based Dye Sensitised Solar Cells and Mechanistic Charge Transfer Investigation. Nanoscale 2017, 9, 15566–15575. [Google Scholar] [CrossRef]
- Harada, Y.; Kasamatsu, N.; Watanabe, D.; Kita, T. Nanosecond-Scale Hot-Carrier Cooling Dynamics in One-Dimensional Quantum Dot Superlattices. Phys. Rev. B 2016, 93, 115303. [Google Scholar] [CrossRef] [Green Version]
- ID Quantique. Available online: https://www.idquantique.com/quantum-sensing/products/id281/ (accessed on 6 January 2023).
- Eimerl, D.; Davis, L.; Velsko, S.; Graham, E.K.; Zalkin, A. Optical, Mechanical, and Thermal Properties of Barium Borate. J. Appl. Phys. 1987, 62, 1968–1983. [Google Scholar] [CrossRef]
- Perova, T.S.; Kasper, E.; Oehme, M.; Cherevkov, S.; Schulze, J. Features of Polarized Raman Spectra for Homogeneous and Non-Homogeneous Compressively Strained Ge1−ySny Alloys. J. Raman Spectrosc. 2017, 48, 993–1001. [Google Scholar] [CrossRef]
- Tamošauskas, G.; Beresnevičius, G.; Gadonas, D.; Dubietis, A. Transmittance and Phase Matching of BBO Crystal in the 3–5 μm Range and Its Application for the Characterization of Mid-Infrared Laser Pulses. Opt. Mater. Express 2018, 8, 1410. [Google Scholar] [CrossRef]
- Niu, K.; Marcus, R.A. Sum Frequency Generation, Calculation of Absolute Intensities, Comparison with Experiments, and Two-Field Relaxation-Based Derivation. Proc. Natl. Acad. Sci. USA 2020, 117, 2805–2814. [Google Scholar] [CrossRef] [Green Version]
- Bache, M.; Guo, H.; Zhou, B.; Zeng, X. The Anisotropic Kerr Nonlinear Refractive Index of the Beta-Barium Borate (β-BaB2O4) Nonlinear Crystal. Opt. Mater. Express 2012, 3, 357. [Google Scholar] [CrossRef] [Green Version]
- Scharoch, P.; Polak, M.P.; Kudrawiec, R. The Electronic Band Structure of Ge1−xSnx in the Full Composition Range: Indirect, Direct, and Inverted Gaps Regimes, Band Offsets, and the Burstein–Moss Effect. In Proceedings of the 2017 IEEE 14th International Conference on Group IV Photonics (GFP), Berlin, Germany, 23–25 August 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 51–52. [Google Scholar]
- Ščajev, P.; Soriūtė, V.; Kreiza, G.; Nargelas, S.; Dobrovolskas, D.; Malinauskas, T.; Subačius, L.; Onufrijevs, P.; Varnagiris, S.; Cheng, H.H. Temperature and Spatial Dependence of Carrier Lifetime and Luminescence Intensity in Ge0.95Sn0.05 Layer. Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 2021, 270, 115204. [Google Scholar] [CrossRef]
- Ščajev, P.; Soriūtė, V.; Kreiza, G.; Malinauskas, T.; Stanionytė, S.; Onufrijevs, P.; Medvids, A.; Cheng, H.-H. Temperature Dependent Carrier Lifetime, Diffusion Coefficient, and Diffusion Length in Ge0.95Sn0.05 Epilayer. J. Appl. Phys. 2020, 128, 115103. [Google Scholar] [CrossRef]
- Carroll, L.; Friedli, P.; Neuenschwander, S.; Sigg, H.; Cecchi, S.; Isa, F.; Chrastina, D.; Isella, G.; Fedoryshyn, Y.; Faist, J. Direct-Gap Gain and Optical Absorption in Germanium Correlated to the Density of Photoexcited Carriers, Doping, and Strain. Phys. Rev. Lett. 2012, 109, 057402. [Google Scholar] [CrossRef]
- Elbaz, A.; Arefin, R.; Sakat, E.; Wang, B.; Herth, E.; Patriarche, G.; Foti, A.; Ossikovski, R.; Sauvage, S.; Checoury, X.; et al. Reduced Lasing Thresholds in GeSn Microdisk Cavities with Defect Management of the Optically Active Region. ACS Photonics 2020, 7, 2713–2722. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ščajev, P.; Miasojedovas, S.; Mekys, A.; Onufrijevs, P.; Cheng, H.-H. Time-Resolved Photoluminescence in GeSn Film by New Infrared Streak Camera Attachment Based on a Broadband Light Upconversion. Coatings 2023, 13, 111. https://doi.org/10.3390/coatings13010111
Ščajev P, Miasojedovas S, Mekys A, Onufrijevs P, Cheng H-H. Time-Resolved Photoluminescence in GeSn Film by New Infrared Streak Camera Attachment Based on a Broadband Light Upconversion. Coatings. 2023; 13(1):111. https://doi.org/10.3390/coatings13010111
Chicago/Turabian StyleŠčajev, Patrik, Saulius Miasojedovas, Algirdas Mekys, Pavels Onufrijevs, and Hung-Hsiang Cheng. 2023. "Time-Resolved Photoluminescence in GeSn Film by New Infrared Streak Camera Attachment Based on a Broadband Light Upconversion" Coatings 13, no. 1: 111. https://doi.org/10.3390/coatings13010111
APA StyleŠčajev, P., Miasojedovas, S., Mekys, A., Onufrijevs, P., & Cheng, H. -H. (2023). Time-Resolved Photoluminescence in GeSn Film by New Infrared Streak Camera Attachment Based on a Broadband Light Upconversion. Coatings, 13(1), 111. https://doi.org/10.3390/coatings13010111